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Continuous attractors are an emergent property of neural population dynamics that
have been hypothesized to encode continuous variables such as head direction and
eye position'*. In mammals, direct evidence of neural implementation of a continuous
attractor has been hindered by the challenge of targeting perturbations to specific

neurons within contributing ensembles??. Dynamical systems modelling has revealed
that neuronsin the hypothalamus exhibit approximate line-attractor dynamicsin
male mice during aggressive encounters’®. We have previously hypothesized that
these dynamics may encode the variable intensity and persistence of an aggressive
internal state. Here we report that these neurons also showed line-attractor dynamics
in head-fixed mice observing aggression®. This allowed us to identify and manipulate
line-attractor-contributing neurons using two-photon calciumimaging and
holographic optogenetic perturbations. On-manifold perturbations yielded
integration of optogenetic stimulation pulses and persistent activity that drove the
systemalong the line attractor, while transient off-manifold perturbations were
followed by rapid relaxation back into the attractor. Furthermore, single-cell
stimulation and imaging revealed selective functional connectivity among
attractor-contributing neurons. Notably, individual differences among mice in
line-attractor stability were correlated with the degree of functional connectivity
among attractor-contributing neurons. Mechanistic recurrent neural network
modellingindicated that dense subnetwork connectivity and slow neurotransmission’
best recapitulate our empirical findings. Our work bridges circuit and manifold
levels?, providing causal evidence of continuous attractor dynamics encoding an
affective internal state in the mammalian hypothalamus.

Neural circuit function has been studied from two vantage points. One
focuses on understanding behaviourally specialized neuron types and
their functional connectivity® %, whereas the other investigates emer-
gent properties of neural networks, such as attractors**", Continuous
attractors of different topologies are theorized to encode a variety
of continuous variables, ranging from head direction'?, location in
space?, reward history™ tointernal states®. Recent data-driven method-
ologies have allowed for the identification of such attractor-mediated
computations directly in neural data>?™', Consequently, attractor
dynamics havereceivedincreasing attention as amajor type of neural
coding mechanism?**>,

Despite this progress, establishing that these attractors arise from
the dynamics of the observed network remains a formidable chal-
lenge?*. This calls for combining large-scale recordings with perturba-
tions of neuronal activity in vivo. Although this has been accomplished
for a point attractor that controls motor planning in cortical area
anterolateral motor cortex'”'8, spatial ensembles in visual cortex
that encode visually guided behaviours'?° and for a ring attractor

in Drosophila®?*, there is no study reporting such perturbations for
a continuous attractor in any mammalian system. While theoretical
work on continuous attractors in mammals is well developed?, the
lack of direct, neural-perturbation-based experimental evidence of
such attractor dynamics has hindered progress towards a mecha-
nistic circuit-level understanding of such emergent manifold-level
network features?®.

Oestrogen receptor type 1 (Esrl)-expressing neurons in the vent-
rolateral subdivision of the ventromedial hypothalamus (VMHvI®™?)
comprise a key node in the social behaviour network and have been
causally implicated inaggression®?*, Calcium imaging of these neurons
infreely behaving animals has revealed mixed selectivity and variable
dynamics, with time-locked attack signals sparsely represented at the
single-neuron level®?, Application of dynamical system modelling?
hasrevealed an approximateline attractorin the VMHvl that correlates
with the intensity of agonistic behaviour, suggesting a population-
level encoding of a continuously varying aggressive internal state’.
This raises the question of whether the observation of aline attractor
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inastatistical dynamical systems model fit to VMHvI®? neuronal activ-
ity reflects inherited dynamics or can be instantiated locally.

This question canbe addressed, in principle, using all-optical meth-
odsto observe and perturb line-attractor-relevant neural activity>*-3°,
A challenge in applying these methods during aggression is that cur-
rent technology requires head-fixed preparations, and head-fixed
mice cannot fight. To overcome this challenge, we took advantage
of arecent observation that VMHvl-progesterone receptor neurons
(whichencompass the EsrI* subset)* **mirror observed interindividual
aggression®, to instantiate the line attractor in head-fixed mice. Using
this preparation, we performed model-guided, closed-loop on- and
off-manifold perturbations® of VMHvI® activity. These experiments
demonstrate that the VMHvl line attractor indeed reflects causal neu-
ral dynamics in this nucleus. They also identified selective functional
connectivity within attractor-weighted ensembles, suggesting alocal
circuitimplementation of attractor dynamics. Modelling suggests
that this implementation may incorporate slow neurotransmission.
Collectively, our findings elucidate a circuit-level foundation for a
continuous attractor in the mammalian brain.

Line attractor for observing aggression

Recent studies have demonstrated that the VMHvI contains neurons
thatareactive during passive observation of, as well as active participa-
tionin, aggression and that reactivating the former can evoke aggres-
sive behaviour®. However, those findings were based on a relatively
small sample of VMHvI neurons, which might comprise a specific sub-
set distinct from those contributing to the line attractor (the latter
represent around 20-25% of Esr1* neurons®). To assess whether these
mirror-like responses canbe observed in E£sr1* neurons that contribute
toline-attractor dynamics, we performed microendoscopic imaging®
of VMHVI® neurons expressing jGCaMP7s in the same freely behaving
animals during engagement in followed by observation of aggression
(Extended Data Fig. 1a—e). Analysis using recurrent switching linear
dynamical systems (rSLDS)? to fit a statistical model to each dataset
(Extended Data Fig. 1f) revealed an approximate line attractor under
both conditions, exhibiting ramping and persistent activity aligned
and maintained across both performed and observed attack sessions
(Extended Data Figs. 1g-q, 2 and 3a-f). Activity during observation
of aggression in the integration dimension (x,), which contributes to
theline attractor, could bereliably used to decode from held-out data
instances of both observation of and engagement in attack, suggest-
ing that this dimension encodes asimilarinternal state variable under
both conditions (Extended Data Fig. 3g,h). Moreover, the integration
dimension was weighted by a consistent and aligned set of neurons
under both conditions, suggesting that a highly overlapping set of
neurons (70%) contributesto line-attractor dynamics during observing
or engaging in attack (Extended Data Fig. 4a-d).

The dynamical systems analysis also revealed adimension orthogo-
nal to the integration dimension (x,) that displayed faster dynamics
timelocked totheentry of theintruder(s) in both conditions (Extended
Data Fig. 1g-1). To examine whether the neurons contributing to the
two dimensions (x; and x, neurons) can be separated on the basis of
physiological properties, we examined their baseline activity when
solitary animals were exploring their home cage before any interac-
tion. We did not detect a difference in amplitude or decay constant
(tau) between x; and x, neurons (Extended Data Fig. 4e-i). However,
we did see aslightly but significantly higher frequency of spontaneous
calcium transients inx, neurons (Extended Data Fig. 4f,g), suggesting
that x, neurons are more spontaneously active than x; neurons when
no interactionis taking place.

While these observed attractor dynamics could be generatedin the
VMHVvI, they might also arise from unmeasured ramping sensory input
or dynamics inherited from an input brain region®. Although behav-
ioural perturbations in previous studies have hinted at the intrinsic

nature of VMHVvI line-attractor dynamics®, a rigorous test requires
direct neuronal perturbations®** targeted to cells that contribute to
theattractor. Direct on-manifold perturbation of acontinuous attractor
has previously been performed only in the Drosophila head direction
system'?, In mammals, although a point attractor has been perturbed
off-manifold using optogenetic manipulation'”®%, direct single-cell
perturbations of neurons contributing to a continuous attractor in vivo
have not beenreported.

To do this, we used two-photon (2P) imaging in head-fixed mice of
VMHvI®” neurons expressing jGCaMP7s* after observation of aggres-
sion and removal of the demonstrator mice (Fig. 1a-c). As described
above, during observation of aggression by the head-fixed mice, rSLDS
analysis identified an integration dimension with slow dynamics (x;)
aligned to anapproximateline attractor, and an orthogonal dimension
with faster dynamics (x,) (Fig. 1d-h,k). We used the mapping between
neural activity and the underlying state space to directly identify neu-
rons contributing to each dimension (Fig. 1i,j). Neurons contributing
to the integration dimension displayed more persistence than those
aligned with the faster dimension (Fig.1g,1,m). Importantly, only asmall
fraction of the neural activity could be explained by movements of the
observer mouse (Extended Data Fig. 5a-e). Thus, a line attractor can
be recapitulated in head-fixed mice observing aggression, opening
the way to 2P-based perturbation experiments.

Holographic activationshows integration

Next, to determine whether VMHVI®” line-attractor dynamics areintrin-
sic to this hypothalamic nucleus, after removing the demonstrator
mice, we performed holographic re-activation of a subset of neurons
contributing to the integration dimension (x;) using soma-tagged
ChRmine*, which was co-expressed with jGCaMP7s (Fig. 1b (bottom)).
These neurons were identified in real-time using rSLDS fitting of data
recorded during observation of aggression (inamanual closed loop),
followed by 2P single-cell-targeted optogenetic reactivation of those
neurons (Fig. 2a).In each field of view (FOV), we concurrently targeted
five neurons, chosen on the basis of the criteria that they (1) contrib-
uted most strongly to a given dimension (x; or x,); and (2) could be
reliably reactivated by photostimulation (Fig. 2a). Repeated pulses
of optogenetic stimulation (2 s, 20 Hz, 5 mW) were delivered with a
20 s interstimulus interval (ISI) (Fig. 2b-d). Under these conditions,
we observed minimal off-target effects (Extended DataFig. 6a-h) and
did not observe spatial clustering of x; or x, neurons (Methods and
Extended Data Figs. 6i-k and 7a,b).

In this paradigm, optogenetically induced activity along the x;
(but not the x,) dimension is predicted to exhibit integration across
successive photostimulation pulses, based on the time constants of
these dimensions extracted from the fit rSLDS model (Fig. 1e). Con-
sistent with this expectation, optogenetic reactivation of cohorts of
five individual x; neurons yielded robust integration of activity in the
entire x; dimension-weighted population, as evidenced by progres-
sively increasing peak activity during the 20 s ISl after each consecutive
pulse (Fig.2¢,d; n = 8 mice). Activity decayed slowly after each peak but
did notreturn to pre-stimulus baseline. Activated x, neurons exhibited
activity levels comparable to their response during observation of
aggression (Extended Data Fig. 7d-f). Similar results were obtained
using an 8 s ISI (Extended Data Fig. 8a). This activity also scaled with
different laser powers (Extended Data Fig. 8e,f). Providing the same
(digital optogenetic) input to the fit rSLDS model also resulted ininte-
gration by the model along the x, dimension, similar to that observed
inthe data (Extended DataFig. 8c). Importantly, x; stimulation did not
evoke appreciable activity in x, dimension neurons (Extended Data
Fig.8g-i).

Tovisualize inneural-state space the effect of reactivating x; neurons
inthe absence of demonstrator mice, we projected the dataintoa 2D
flow-field based on the dynamics matrix fit to data acquired during
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Fig.1|Attractor dynamicsin head-fixed mice observing aggression.a, The
experimental paradigm for 2P imaging in head-fixed mice observing aggression.
b, Representative FOV through a GRIN lens in the 2P set-up (top). Bottom,
fluorescence image of a coronal slice showing expression of jGCaMP7s and
ChRmine.Scale bars,100 um. ¢, Neuraland behavioural raster fromanexample
mouse observingaggressionin the 2P set-up (left). Thearrowsindicateinsertion
of submissive BALB/cintrudersinto the observation chamber for interaction
with anaggressive Swiss Webster (SW) mouse. Right, example neurons from the
raster totheleft.d, Neural activity projected onto rSLDS dimensions obtained
frommodels fit to 2Pimaging datain one example mouse. e, rSLDS time constants
across mice.n =9 mice. Statistical analysis was performed using two-tailed
Mann-Whitney U-tests. Dataare mean +s.e.m.f, Theline-attractor score
(Methods) across mice.n =9 mice. Dataare mean +s.e.m. g, Behaviour-triggered
average of x,and x, dimensions, aligned to the introduction of BALB/c mice into
theresident’s cage.n =9 mice. Dataare the average activity (dark line) £ s.e.m.
(shading). h, Flow fields from rSLDS model fit to 2P imaging data during
observation of aggression from one example mouse. The larger blue arrows
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Autocorrelation HW (s)

nextto the neural trajectory indicate the direction flow of time. The smaller
arrows represent the vector field from the rSLDS model. i, Identification of
neurons contributing to x, dimension from rSLDS model (top). The neuron’s
weightisshown as an absolute (abs) value. Bottom, activity heat map of five
neurons contributing most strongly to the x, dimension. Right, neural traces of
the same neuronsand anindication of when the systementers the line attractor.
j,Asinibut for the x, dimension. k, Dynamic velocity landscape from 2P imaging
dataduring observation of aggression from one example mouse. Blue, stable
areainthelandscape;red, unstable areainthelandscape. The black line shows
the trajectory of neuronal activity.l, The cumulative distributions of the
autocorrelation half width (ACHW) of neurons contributing to the x, (green)
andx, (red) dimensions.n=9 mice, 45 neuronseach for the x,and x, distributions.
m, The mean autocorrelation half width (HW) across mice for neurons
contributing to the x; and x, dimensions. n =9 mice. Statistical analysis was
performed using atwo-tailed Mann-Whitney U-test; **P=0.0078. Dataare
meanz+s.e.m.***P<0.0001,**P<0.01.
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the observation of aggression. Activation pulses transiently moved
the population activity vector (PAV) ‘up’ the line attractor, followed
by relaxation back down the attractor to a point that was higher than
the initial position of the system (Fig. 2e,f). To quantify this effect,
we calculated the Euclidean distance in state space between the ini-
tial timepoint during the baseline period (t;,,) and the timepoint
at the end of stimulation or at the end of the ISI after each pulse
(tstim-ena AN pose.ims respectively) (Fig. 2e-h). This revealed that the
X, perturbations resulted in progressive, stable on-manifold move-
ment along the attractor with each consecutive stimulation, as meas-
ured by the increase in both metrics (Fig. 2g,h). However, we found
that integration of optogenetic stimulation pulses saturated in the
x; dimension after the third pulse, suggesting that the line attractor
occupies a finite portion of the neural state space (Extended Data
Fig.9a-d).

Importantly, activation of x, neurons did not lead to integration
(Fig. 2i-k) as predicted by the time constant derived from the fit
rSLDS model (Fig. 1e (red bar)). Instead, after each pulse, we observed
stimulus-locked transient activity in the x, dimension followed by a
decay back to the baseline during the ISI period, across stimulation
paradigms (Fig. 2k and Extended Data Fig. 8b), with little to no effect
on x; neurons (Extended Data Fig. 8j-1). In 2D neural-state space, we
observed thatx, neuron activation caused transient off-manifold move-
ments of the PAV orthogonal to the attractor axis during each pulse
(Fig. 21-0). After each stimulus, the PAV relaxed backinto the attractor,
near to the initial location that it occupied before the stimulus.

To examine further the stability of different points along the line
attractor, we performed photostimulation of x, neurons after first
movingactivity in neural-state space further along the attractor using
photostimulation of x; neurons (Extended Data Fig. 9e, f). This x, per-
turbationalso resulted in transient off-manifold movements of the PAV
orthogonaltothelineattractor, followed by relaxationto the position
occupied after the previous x; stimulation (but before the x, stimula-
tion), rather than simply relaxing back to the baseline (Extended Data
Fig.9g-i). This experiment confirms the attractive nature of different
points along the line. Lastly, activation of randomly selected neurons
that were not weighted by either dimension did not produce activ-
ity along either the x; or x, dimension, emphasizing the specificity
of our on- and off-manifold holographic activation (Extended Data
Fig.9j—n). Activation of either ensemble did not resultin overt changes
in the behaviour of the head-fixed mouse (Extended Data Fig. 5f-j).
Together, these findings demonstrate that a subset of VMHvI®? neurons
(x,) canintegrate direct optogenetic stimulation, moving the PAV along
the line attractor, while a different subset (x,) pushes the PAV out of
the attractor.

Line-attractor neurons form ensembles

Theintegration observed in the abovementioned experiments could
reflect a cell-intrinsic mechanism, or it could emerge from recur-
rent interactions within a network*. To determine whether the lat-
ter mechanism contributes to the line attractor, we first examined
whether putative x; follower cells (that is, non-targeted neurons
that were photoactivated by stimulation of targeted x; neurons)
exhibited integration. Indeed, even after excluding the targeted x;
neurons themselves as well as potentially off-target neurons located
within a 50 um radius of the targeted cell (Extended Data Figs. 6a-h
and 10j-n), we observed integration in the remaining x; neurons
(Extended Data Fig. 10a-c). Moreover, optogenetically evoked inte-
grated activity in targeted x; neurons could be reliably decoded from
the activity of their follower x; neurons (Extended Data Fig. 10d-f).
This decoding was significantly better than that obtained using the
activity of non-targeted x, neurons; furthermore, the x, activity-based
decoder performance was slightly worse than decoders trained on
neurons chosen randomly (Extended Data Fig. 10g). These analyses
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suggest that selective functional connectivity between integration
dimension-weightedx; neuronscontributestoline-attractor dynamicsin
the VMHVL.

To assess more precisely the extent of functional connectivity
among VMHVI® neurons, we activated unitary x; or x, neurons and per-
formedimaging of non-targeted neurons (Fig. 3a). These experiments
revealed aslowly decaying elevation of activity during the ISl periodin
non-targeted x; neurons after each pulse of activation (Fig. 3b,d) that
was mostly positive (Extended Data Fig.10h,i). Notably, the strength of
functional connectivity was not positively correlated with the distance
fromthe targeted photostimulated cell (Extended DataFig.10j-n) and
was still observed even after excluding neurons in a 50 pm zone sur-
rounding the targeted neuron to eliminate potential off-target effects
due to ‘spillover’ photostimulation (Extended Data Fig. 100,p). Com-
paring the activity of non-targeted photoactivated x; neurons during
unitary x; neuron photoactivation versus during targeted activation
of the five-x; neuron cohorts revealed that the response strength of
the non-targeted x, neurons scaled with the number of targeted x; neu-
rons (Extended Data Fig.10q,r). Importantly, the observed functional
coupling between x; neurons could not be explained by local cluster-
ing of non-targeted x; neurons near the targeted cell (Extended Data
Figs. 6i-k and 10k-1).

In contrast to the observed x;-to-x; functional connectivity, we
observed little activity in non-targeted x, neurons after activation of
unitary x; or x, neurons (Fig. 3¢c,e,g,j), suggesting that functional x,—x;
connectivity is selective. While there was atrend toagradualincreasein
activity innon-targeted x, neurons after repeated activation of unitary
X, neurons (Fig. 3f-h), that increase was not statistically significant
(Fig. 3i,j).

The functional connectivity that we observed could arise either
froma population of sparsely but strongly interconnected neurons, or
fromapopulation with denser connections of intermediate strength*
(Fig. 4a (left)). To assess this, we calculated the distribution of pair-
wise influence scores in our unitary neuron stimulation experiments,
defined as the average evoked z-scored activity in each non-targeted
photoactivated x; neuron after photostimulation of a single targeted
cell. To estimate the amount of functional coupling within the x;
network, we considered the percentage of x;>x; pairs that had influ-
ence scores higher than the highest x,>x, pair, which had a zscore of
around 0.6 (Fig. 4a (right, vertical line)). The fraction of x,~>x; pairs
above this threshold was around 36% (Fig. 4a (right)). These data sug-
gest that VMHVI®” neurons that contribute to the line attractor form
relatively dense functional ensembles, consistent with theory-based
predictions*°.

We next used computational approaches to investigate the kinetics
of the observed functional connectivity within x; ensembles. Such
connectivity could reflect either fast, glutamatergic synapses, as typi-
cally assumed for most attractor networks*’; or they could be slow
neuromodulator-based connections that use GPCR-mediated second
messenger pathways to sustain long-time-scale changes in synaptic
conductance. To investigate systematically the density and synaptic
kinetics of networks capable of generating line attractorlike dynamics
with the measured integration-dimension (x;) network time constants,
we turned to mechanistic modelling using an excitatory integrate and
fire network’ (Fig. 4b). As VMHvl is >80% glutamatergic*?, we used excit-
atory networks and analytically calculated the network time constant
using an eigen-decomposition of the connectivity matrix*’ (Extended
DataFig.11a). By varying the synaptic conductance time constant (z;)
and the density of the integration subnetwork connectivity, we found
that only artificial networks based on relatively sparse connectivity
(around 8-12%) and slow synaptic time constants (around 20 s) could
yield network time constants (z,) in the experimentally observed range
(-50-200 s; Fig. 4c,e (red shading)). By contrast, networks with fast
glutamatergic connectivity failed to do so over the same range of con-
nection densities (Fig. 4d,f).
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Fig.3|Neuralimplementation ofaline attractor by functional connectivity.
a, Left, the paradigm for examining activity in non-targeted x, and x, neurons
after activation of unitary x, neurons. Right, the average z-scored activity of
the perturbed (targeted) x, neurons (25single neurons from n =8 mice). Data
aretheaveragetrace (darkgreen) +s.e.m. (shaded green area).b, The average
z-scored activity of non-targeted x, neurons after targeting unitary x, neurons.
n=8mice.Dataare averagetrace (dark green) +s.e.m. (shaded green area).
¢, The average z-scored activity of non-targeted x, neurons after targeting of
unitary x, neurons.n =8 mice. Dataare average (traceindarkred) + s.e.m.
(shadedredarea).d, Quantification of activity in non-targeted x, neurons after
targeting of single x, neurons. NS, P=0.16; **P=0.0037 (bottom), ***P=0.0005,
**P=0.0016 (top). n=8 mice. Dataare mean =s.e.m. e, Quantification of the
activityinnon-targeted x, neurons after targeting of single x, neurons (NS;n=8

In these purely excitatory network models, the density of con-
nections that yielded network time constants in the observed range
was much lower than the experimentally measured value (36%). To
match more accurately the empirically observed connection density,
we incorporated excitation-recruited fast-feedback inhibition into
our integrate-and-fire network’, as VMHvl is known to receive dense
GABAergic innervation from surrounding areas****. The addition of
global strong feedback inhibition allowed networks to match the
observed connection density (36%) but, importantly, maintained the
slow nature of the functional connectivity (20 s; Fig. 4g and 4h (left)).
Indeed, networks simulated with along 7, (20s) and dense 6 (36%) could
integrate digital optogenetic stimulationin amanner like that observed
experimentally (Fig. 4i,j). By contrast, purely glutamatergic networks
(r,=100 ms) were unable tointegrate at the observed timescales given
the measured connectivity density (Fig. 4h (right) and 4k-1). Together,
these results suggest animplementation of the VMHvI®?line attractor
that combines slow neurotransmission and relatively dense* subnet-
work interconnectivity within an attractor-creating ensemble.

Attractor stability ties to connectivity

The observed dynamics along the integration dimension exhibits two
important characteristics that canreflect the stability of the line attrac-
tor, rampingactivity up; and slow decay down the integrator (Fig. 5a).
Both of these characteristics might either be intrinsic or be driven by
external inputs to the line attractor>*°, Previously, we observed that
individual differences in aggressiveness among mice were positively
correlated with the stability and decay of the VMHvl line attractor
during aggression®. We therefore investigated whether individual
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mice). Dataare mean+s.e.m.f, The paradigm for examining the activity in
non-targeted x; and x, neurons after activation of single x, neurons (left). Right,
theaverage z-scored activity of targeted x, neurons (18 single neurons from
n=7mice). Dataarethe average trace (darkred) +s.e.m. (shadedred area).

g, The average z-scored activity of non-targeted x, neurons after targeting of
singlex, neurons.n =7 mice. Dataare the average trace (darkred) +s.e.m.
(shadedred area).h, The average z-scored activity of non-targeted x; neurons
after targeting of single x, neurons. n =7 mice. Data are the average trace (dark
green) = s.e.m. (shaded green area). i, Quantification of activity in non-targeted
x,neurons after targeting of single x, neurons. NS, from bottomto top, P=0.999,
P=0.31,P=0.09;*P=0.0316.n=7 mice.Dataare mean +s.e.m.j, Quantification
ofactivity in non-targeted x, neurons after targeting of single x, neurons (NS).
n=7mice.Dataaremean+s.e.m.

differences in line-attractor ramping or rate of decay might also be
correlated with the strength of functional connectivity within the x;
ensemble (Fig. 5b-d). We plotted either the x, decay time constants,
or the rate of ramp up along the x; dimension (obtained from rSLDS
models fit to each mouse using data recorded during attack observa-
tion), against different quantitative metrics of functional connectivity
betweentargeted x; or x, neurons and their non-targeted putative fol-
lower cells (obtained from the same animals by single-cell optogenetic
stimulation and imaging after removal of the demonstrator intruder
mice) (Fig. 5d,e and Extended Data Fig. 12a).

Notably, there was astrong correlation across mice between the time
constant (decay) of the line attractor measured during the observa-
tion of aggression, and the strength of functional connectivity among
integration-dimension (x;) neurons measured by post-observation
optogenetic stimulation (Extended DataFig.12¢,d). The strength of this
correlationwas higher after the third stimulus (©* = 0.87) compared with
after the first stimulus (* = 0.59) (Fig. 5g and Extended Data Fig. 12b),
indicating that individual differences in the attractor time constant
become more apparent once the system has already integrated sev-
eral inputs, thereby taking longer to decay. By contrast, there was no
correlation between functional connectivity and the rate of ramp-up,
suggesting that the latter might be driven by extrinsic inputs to the
VMHUvI (Fig. 5f and Extended Data Fig. 12b-d). Importantly, the cor-
relation between attractor stability and functional connectivity was
specific to neurons in the integration (x;) subnetwork, and did not
hold when rSLDS time constants were compared with the influence
strength of targeted x, neurons on.x, cells (Extended Data Fig.12e-h).
Thus, individual differences among mice in the stability of the line
attractor during the observation of aggression are correlated with
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Mechanistic modelling predicts the importance of slow-time-scale neurotransmission to hypothalamic line-attractor dynamics
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Fig. 4 |Mechanistic modelling suggests slow neurotransmission and
feedback inhibition. a, Diagram of strong but sparse connectivity amongx;
neurons (1), or dense interconnectivity within subnetwork (2) (left). Right,

the empirical distribution of the strength of pairwise functional connectivity
betweenx, neurons (green) and fromx; tox, neurons (red). n =99 pairs,n=7
mice. b, Cartoonillustrating different elements of an excitatory network that
candetermine network-level persistent activity. ¢, Model simulation result
showing the network time constant (z,,) by varying the subnetwork connectivity
(o)intherange of 0to20% density values and r;in the range of 0t0 20 s. Blue
portions show configurations that result in unstable networks with runaway
excitation.d, Magnified version of ¢ (the region left of the dashed line) showing
glutamatergic networks with asynaptic conductance time constant (z,) inrange
0of 0.01t0 0.6 s. e, Network time constant (r,) against density of integration
subnetwork for slow neurotransmitter (z,:10,15and 20 s). 7, varies monotonically
withdensity for large values of 7. f, As in e but for glutamatergic networks

individual differences in the functional connection strength among
attractor-contributing neurons.

Discussion

Using model-guided closed-loop all-optical experiments, we provide
causal evidence of line attractor-like dynamics in a mammalian sys-
tem (Fig. 5h,i). Our data and modelling also provide insights into the
implementation of the approximate line attractor’. We found evidence
of relatively dense, selective connectivity among a physiologically
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fast feedback inhibitionincorporated. h, Plot of network time constant (z,,)
againstdensity of integration subnetwork for a slow neurotransmitter network
with 7, =20s, for different values of strength of inhibition (inhibitory gain, g;,,:
1.25,5and 10) (left). Right, as on the left but for a glutamatergic network with
t,=0.1s.i,Model simulation of aslow neurotransmitter network with fast
feedbackinhibition (¢,: 20 s, 36% density of subnetwork connectivity). Top, the
input (20 sISI) provided to the model, Bottom, spiking activity in the network.
The first200 neurons (20%) comprise the interconnected integration
subnetwork.j, Ca* activity convolved from firing rate (Methods) of the integration
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distinct subset of Esr1” neurons. Whether this subset corresponds
to one of the transcriptomically distinct subtypes of EsrI* neurons
remains to be determined®. Our models confirm the importance of
rapid feedback inhibition’, consistent with studies of the Drosophila
ring attractor?*, However they differ from most continuous attractor
models**° by invoking slow neuromodulatory transmission rather
than fast glutamatergic excitation. Numerous theoretical studies
have posited that continuous attractors relying on recurrent gluta-
matergic connectivity require precise tuning of synaptic weights to
sustain stable attractor dynamics*®***’, By contrast, the inclusion of
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Fig.5|The strength of functional connectivity reflectsline-attractor
stability. a, Example neural activity projected onto the x; (integration) dimension
(dimen.) of one mouse observing aggression, demonstrating aramp when the
BALB/cintruder enters the demonstrator cage containing an aggressive SW
mouse (thatis, movementup theline attractor) and decay after removal of the
BALB/cintruder from the demonstrator cage (thatis, movement downtheline
attractor).b, Dynamics of the integration dimension aligned to theentry of the
BALB/cintruder for three example mice. Note the different rates of rampingin
different mice.Norm. act., normalized activity. c, Asinb, aligned to the removal
ofthe BALB/cintruder, showing different rates of decay. d, z-scored activity of
non-targeted x; neurons after activation of individual x, neuronsin mice fromb
and c. The pink vertical lines show photostimulation pulses. e, Illustration of

slow neurotransmission in our mechanistic models yielded network
time constants in the observed range across a wide range of con-
nectivity densities. This slow neurotransmission may have evolved
not only to ensure attractor robustness, but also to implement the
relatively long time scales of internal affective or motive states. These
slow dynamics could be implemented by GPCR-mediated signalling
triggered by biogenic amines or neuropeptides*. Consistent with
this prediction, we have recently found that VMHvI line-attractor
dynamics and aggression are dependent on signalling through
oxytocin and/or vasopressin neuropeptide receptors expressed in
Esr1' neurons*. However, that does not exclude a contribution from
recurrent glutamatergic excitation in the ventromedial hypothala-
mus, as in line attractors that mediate cognitive functions on shorter
time scales™**°.

different quantitative metrics of the changein activity of non-targeted x;
neurons fromd as either the average z-scored activity, or the areaunder

the curve (AUC). The pink vertical lines show the photostimulation pulses.

f, Correlation between the rate of ramping of the integration dimension from
the rSLDS model fit to data obtained from observation of aggression, and the
AUC of non-targeted x, neurons measured using AUC after the third stimulus
(r*=0.01;NS).n=8 mice.g, The correlation between the rSLDS time constant
(decayrate of theintegration dimension) obtained from observation of
aggression,and the AUC of non-targeted x, neurons measured after the third
stimulus (R*=0.87;***P < 0.001). n=8 mice. h, Summary of theresultsillustrating
causalevidence of ahypothalamiclineattractor.i, Diagram of the implementation
ofahypothalamicline attractor encoding abehaviouralinternal state.

Lastly, our observationsindicate a pronounced correlation between
individual differences in the functional strength of integration sub-
network connectivity and differences in the measured stability of
the line attractor, perhaps reflecting a leaky integrator. We previ-
ously found that, in freely behaving animals, individual differences
in attractor stability were correlated with individual differences in
aggressiveness®. By transitivity, this suggests that individual differ-
ences in the strength of functional connectivity within the attractor
network might underlie individual differences in aggressiveness. As
these differences are observed among genetically identical inbred
mice, these observations suggest that attributes of the attractor, such
as its connectivity density or strength, may be modifiable (either by
epigenetic mechanisms and/or experience®). Deciphering the under-
lying mechanisms that afford this attractor its apparent flexibility
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while maintaining its robustness represents a promising avenue for
future research.
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Methods

Mice

All of the experimental procedures involving the use of live mice,
or their tissues were carried out in accordance with NIH guidelines
and were approved by the Institute Animal Care and Use Committee
and the Institute Biosafety Committee at the California Institute of
Technology (Caltech). All C57BL/6N mice used in this study, includ-
ing wild-type and transgenic mice, were bred at Caltech. Swiss Web-
ster (SW) male residents and BALB/c male intruder mice were bred
at Caltech. Experimental C57BL/6N mice and resident SW mice were
used at the age of 8-20 weeks. Intruder BALB/c mice were used at the
age of 6-12 weeks and were maintained with three to five cage mates
toreduce their aggression. Esr1** knock-in mice (Jackson Laboratory,
017911) were back-crossed into the C57BL/6N background and bred at
Caltech. Heterozygous Esr1* mice were used for cell-specific targeting
experiments and were genotyped by PCR analysis using genomic DNA
from ear tissue. Allmice were housed in ventilated microisolator cages
inatemperature-controlled environment (median temperature, 23 °C,
humidity, 60%), under areversed 11 h-13 h dark-light cycle, with ad
libitum access to food and water. Mouse cages were changed weekly.

Viruses

The following adeno-associated viruses (AAVs), along with the
supplier, injection titres and injection volumes, were used in this
study: AAV1-syn-FLEX-jGCaMP7s-WPRE (Addgene, 104492, around
2 x 102 viral genomes per ml, 200 nl per injection), AAVdj-Efla-DIO-
ChRmine-mScarlet-Kv2.1-WPRE (Janelia Vector Core, around 2 x 10
viral genomes per ml, 200 nl per injection).

Histology

After completion of 2P/miniscope experiments, histological verifica-
tion of virus expression and implant placement were performed on all
ofthe mice. Mice lacking virus expression or correctimplant placement
were excluded from the analysis. Mice were perfused transcardially with
0.9% saline at room temperature, followed by 4% paraformaldehydein
1x PBS. Brains were extracted and post-fixed in 4% paraformaldehyde
overnight at 4 °C, followed by 24 hiin 30% sucrose/PBS at 4 °C. The
brains were embedded in OCT mounting medium, frozen ondry ice
andstored at-80 °C for subsequent sectioning. Brains were sectioned
atathickness of 80 pm onacryostat (Leica Biosystems). The sections
were washed with 1x PBS and mounted onto Superfrost slides, then
incubated for 30 min at room temperature in DAPI/PBS (0.5 pg ml™)
for counterstaining, washed again and a cover slip was added. The sec-
tions were imaged with epifluorescence microscope (Olympus, VS120).

Stereotaxic surgeries

Surgeries were performed on sexually experienced adult male EsrI*
miceaged 6-12 weeks. Virus injection and implantation were performed
asdescribed previously®*!. Inbrief, mice were anaesthetized with iso-
flurane (5% for induction and 1.5% for maintenance) and placed onto
astereotaxic frame (David KopfInstruments). Virus was injected into
the target area using a pulled-glass capillary (World Precision Instru-
ments) and a pressure injector (Micro4 controller, World Precision
Instruments), at a flow rate of 50 nl min™. The glass capillary was
left in place for 5 min after injection before withdrawal. Stereotaxic
injection coordinates were based on the Paxinos and Franklin atlas®.
Virusinjection: VMHvl, anteroposterior (AP), -1.5; mediolateral (ML),
+0.75; dorsoventral (DV), —5.75. For 2P experiments GRIN lenses (0.6 x
7.3 mm, Inscopix) were slowly lowered into the brain and fixed to the
skull with dental cement (Metabond, Parkell). Coordinates for GRIN lens
implantation: VMHvI, AP, -1.5; ML, -0.75; DV, -5.55). Apermanent head
bar was attached to the skull with Secure Resin cement (Parkell). For
microendoscopy experiments, an additional baseplate was attached
to the skull (Inscopix).

Housing conditions for behavioural experiments

All male C57BL/6N mice used in this study were socially and sexually
experienced. Mice aged 8-12 weeks were initially co-housed with a
female C57BL/6N female mouse for 1 day and were then screened for
attack behaviours. Mice that showed attack towards males during a
10 minresident intruder assay were selected for surgery and subse-
quent behaviour experiments. From this point forward, these male
mice were always co-housed with a female.

Behaviour annotations

Behaviour videos were manually annotated using a custom
MATLAB-based behaviour annotation interface®>**. A ‘baseline’ period
of 5 minwhen the animal was alone inits home cage was recorded at the
start of every recording session. Two behaviours during the resident
intruder assays were annotated: sniff (face, body, genital-directed
sniffing) towards male intruders, and attack (bite, lunge).

Behavioural assays

An observation arena was built from a transparent acrylic (18 x
12.5 x18 cm, length x width x height), and a perforated part was put
in front of the mice observing aggression. Perforations were 1.27 cm
diameter and spread evenly throughout the bottom third of the panel.
Beforeinitiation of the assay, the observation arena was scattered with
soiled bedding from the cage of the aggressive SW demonstrator. For
observation of aggressionin freely behaving animals (miniscope experi-
ments), anobserver was first habituated for 15 min. A singly housed SW
male demonstrator was then introduced into the observation arena,
followed 1 min later with the insertion of a socially housed stimulus
male (BALB/c) mouse into the same compartment. The observation
ofaggressive encounters persisted for around 1 min, then, after 2 min,
adifferent intruder was introduced for another minute. Observation
assays were conducted under white-lightillumination. For experiments
inengaging aggression, the resident mouse was first habituated 15 min
then a BALB/c intruder mouse was introduced twice for 1-2 min. For
the experiments comparing neural activity of mice observing aggres-
sionand mice engaging aggression, we randomly changed the order of
sessions. For mice observing aggressioninthe 2P set-up, the approach
was similar, except that the observer mouse was head-fixed and on a
treadmill instead of freely behaving in his home cage.

Microendoscopy imaging

Onthe day ofimaging, the mice were habituated for at least 15 min after
installation of the miniscope in their home cage before the start of the
behaviour tests. Imaging data were acquired at 30 Hz with 2x spatial
downsampling; light-emitting diode power (0.1-0.5) and gain (1-7x)
were adjusted depending on the brightness of GCaMP expression as
determined by the image histogram according to the user manual. A
transistor-transistor logic pulse from the Sync port of the data acquisi-
tion box (Inscopix) was used for synchronous triggering of StreamPix7
(Norpix) for video recording.

2Pimaging and holographic optogenetics

Two to three weeks after surgery, the mice were habituated to the
experimenter’s hand by handling for 15 min a day for three consecu-
tive days. Once the mice were habituated to the experimenter’s hand,
they were manually scooped and gently placed onto the treadmill. Mice
were head-fixed for 3 consecutive days for habituation. Head fixation
was achieved by securing the head bar into a metal clamp attached to
acustom head stage. During habituation, the mice were placed under-
neath the objective for 15 min and given access to random presenta-
tions of chocolate milk. After habituation, combined 2P imaging and
behaviour sessions were conducted. jGCaMP7simaging was acquired
using an Ultima 2P Plus and the Prairie View Software (Bruker Fluores-
cence Microscopy). Individual frames were acquired at 10 Hz using a
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galvo-resonant scanner with aresolution of 1,024 px x 1,024 px. We used
along-working-distance x20 air objective designed for infrared wave-
lengths (Olympus, LCPLN20XIR, 0.45 NA, 8.3 mm working distance)
combined with afemtosecond-pulsed laser beam (Chameleon Discov-
ery, Coherent). GCaMP was excited using a 920 nm wavelength. For
targeted photostimulation, the same microscope and acquisition sys-
tem (Bruker) was used with a second laser path consisting ofa1,035 nm
high power femtosecond pulsed laser (Monaco1035-40-40, Coherent),
spatial light modulator (512 x 512 px density) to generate multipoint
stimulation montages (NeuraLight 3D, Bruker). During photostimu-
lation, the mice were head-fixed in complete darkness on a rotating
cylinder that enabled themto run. Neurons were selected for targeted
photostimulationbased on two criteria: (1) their weights fromthe rSLDS
modeland (2) ifthey responded to photostimulation. In case aneuron
did not show a significant increase in activity in response to photo-
stimulation, anew neuron was chosen until atotal of five photosensitive
neurons was targeted for each grouped stimulation experiment (Fig. 2).
During the photostimulation session, a 128-frame average image was
generated to clearly highlight all neurons. To reduce off-target effects
during photostimulation, we used small targets (10 pm diameter) that
were manually restricted to GCaMP-expressing neurons. Moreover,
the laser power was adjusted to be amaximum of 5 mW per target. We
used Prairie software to elicit holographic photostimulation (10 Hz,
25,10 ms pulse width). Photostimulations were done between frames
toavoid laser artefacts. Importantly, to reduce cross activation of the
ChRmine from the 920 nm laser, we kept laser power for imaging to
belessthan30 mW.

Toextractregions of interest, datafrom mice observing aggression
was uploaded toImageJ. Videos were then motion corrected using the
moco plugin®. Motion-corrected videos were averaged, and additional
contrast and brightness adjustments were made to clearly highlight all
neurons inthe FOV. Cells were then manually extracted and an rSLDS
model was used to identify x; and x, dimension neurons. Neurons
were then identified on the FOV using the Prairie view software and
were targeted for photostimulation. While rSLDS models was running
(15-20 min, see below), control experiments were conducted.

Microendoscopy data extraction

Preprocessing. Miniscope data were acquired using the Inscopix Data
Acquisition Software as 2x downsampled .isxd files. Preprocessing and
motion correction were performed using Inscopix Data Processing
Software. In brief, raw imaging data were cropped, 2x downsampled,
median filtered and motion corrected. A spatial band-pass filter was
then applied to remove out-of-focus background. Filtered imaging
data were temporally downsampled to 10 Hz and exported as a .tiff
image stack.

Calcium data extraction. After preprocessing, calcium traces were
extracted and deconvolved using the CNMF-E*® large data pipeline
with the following parameters: patch_dims = [4], gSig =3, gSiz=13,
ring_radius =17, min_corr = 0.7, min_pnr = 8. The spatial and temporal
components of every extracted unit were carefully inspected manually
(SNR, PNR, size, motion artefacts, decay kinetics and so on) and outli-
ers (obvious deviations from the normal distribution) were discarded.

Terminology. We use the following terminology to refer to the design

and results of our experiments:

(1) x, or x, neurons: cells that were identified by rSLDS modelling as
contributing to dimensions x; or x,, respectively, during observation
of aggression.

(2) Targeted neurons: rSLDS-identified cells that were purposely
photostimulated.

(3) Photoactivated neurons: cells that were empirically found to
increase their AF/Finresponse to photostimulation of one or more
targeted neurons, thatis, photoresponsive neurons. This category

includes both the purposely stimulated (targeted) and not pur-
posely stimulated neurons. The latter may include both off-target
neurons and putative follower cells.

(4) Off-targetneurons: photoactivated neurons that were not purposely
photostimulated, but which responded to photostimulation of a
selected target cell(s) with an increased AF/F because they were
close enough (within 15 pm) to be inadvertently activated by light
spillover from the targeted neuron (Extended Data Fig. 6a-h).

(5) Putative follower cells: neurons that responded to photostimu-
lation and that were outside a 50 pm radius around the targeted
cell (to conservatively exclude off-target neurons; Extended Data
Figs. 6h and 10k-n); they are putative targets (direct or indirect)
of the targeted cell.

Dynamical system models of neural data. rSLDS models'®?’ were fit

toneural dataas previously described®. In brief, rSLDS is a generative

state-space model that decomposes nonlinear timeseries data into
aset of discrete states, each with simple linear dynamics. The model
describes three sets of variables: a set of discrete states (2), a set of
latent factors (x) that captures the low-dimensional nature of neural
activity and the activity of recorded neurons (y). While the model can
alsoallow for the incorporation of external inputs based on behaviour
features, such externalinputs were not included in our first analysis.

The model is formulated as follows: at each timepoint, thereis a
discretestatez, € {1, ..., K} thatdepends recurrently on the continuous
latent factors (x) as follows:

DP(2:111 2z, =k, x;) = softmax{R,x, + r;} @

where R, € R“* and r, € R¥ parameterize amap from the previous
discrete state and continuous state to a distribution over the next dis-
crete states using a softmax link function. The discrete state z, deter-
mines the linear dynamical system used to generate the latent factors
atanytimet:

X =A; X1+, te, (2)

where A, € R”*¢ is a dynamics matrix and b, € R” is a bias vector,
where Dis the dimensionality of the latent space and e,~ N(O, Qz[) is
a Gaussian-distributed noise (also known as innovation) term.

Lastly, we canrecover the activity of recorded neurons by modelling
activity as a linear noisy Gaussian observation y, € R" where Nis the
number of recorded neurons:

Y, =Cx, +d+6, (3)

ForCe R"*Pand 6;~N(0, S), aGaussian noise term. Overall, the sys-
tem parameters that rSLDS needs to learn consists of the state transi-
tion dynamics, library of linear dynamical system matrices and
neuron-specific emission parameters, which we write as:

0="{{Acby, Qu R i}, €. d, S} 4)

We evaluate model performance using both the evidence lower
bound and the forward simulation accuracy (Fig. 3a) described
previously>”, as well as by calculating the variance explained by the
model on data.

We used two-dimensional models, selecting the optimal number of
states through fivefold cross-validation. To ascertain which neurons
contributed to each of the two model dimensions (x; and x,), we initially
confirmed the orthogonality of these dimensions by computing the
subspace angle betweenthem (88.1+ 0.87°,n =9 mice). Given this near
orthogonality, we then used the columns of the emission matrix Cto
identify neurons that contributed to the two separate dimensions of
the model.



The contribution of neurons to each latent dimension is defined
based on their weights from the emission matrix C, which is initial-
ized by factor analysis and then optimized by rSLDS. In the matrix
C, the rows define the weights that create the latent dimensions and
the columns defined the different latent dimensions (x; and x,) in
the model. The model performance is reported both as the evidence
lower bound, which is equivalent to the Kullback-Leibler divergence
between the approximate and true posterior as well as the variance
(cross-validated R? (cvR?)) explained. We cross-validated the model
using fivefold cross-validation, for which we trained the data on four
arbitrary portions of the data and tested on aleft out fifth portion. Inall
of the experiments, the model must achieve at least 70% cvR?beforeit is
used for downstream analysis such asidentification of x;and x, neurons.
Models fit to miniscope dataduring engagement of aggression obtained
acvR?=84.7 + 0.03%, while the same model explains 67.2 + 0.02% of
variance in data obtained from observation of aggression. Flow fields
obtained from head-fixed animals observing aggression where fit with
input terms representing the presence of the BALB/c intruder.

Estimation of time constants. We estimated the time constant of each
dimension of linear dynamical systems using eigenvalues A, of the
dynamics matrix of that system, derived previously as>":

(5)

7

=
log(14,1)

The intrinsic leak rate is defined based on the time constant of the
integration dimensionacross the whole session. The activity observed
by the model takes into account both decays (that is, the decays after
thefirstand second time theintruder isremoved), and therefore gives
high prediction to the holographic perturbation experiments (cVR?,
~85%; Fig. 2f,p). Note also that the dynamics captured by the perturba-
tion experiments more closely resembles the second intruder inter-
action rather than the first. Furthermore, the SW mouse is still in the
observation chamber between BALB/cintruders, butisremoved after
thesecondintruder. For this reason, the observed dynamicsis mostly
consistent and across mice the second decay seems faster.

Calculation of line attractor score. To provide a quantitative measure
ofthe presence of line-attractor dynamics, we devised aline attractor
score as defined previously® as:

t
line attractor score= logztf’7 (6)

n-1

wheret,isthe largest time constant of the dynamics matrix of adyna-
mical systemand ¢,_, is the second largest time constant.

Calculation of autocorrelation half-width. We computed autocorre-
lation halfwidths by calculating the autocorrelation function for each
neuron timeseries data (y,) for a set of lags as described previously'.
In brief, for atime series (y,), the autocorrelation for lag k is:

=S
= Co (7)
where ¢, is defined as:
1 T-k B B g
Ck_? (y[ _y)(VHk _y) (8)

—

t=

and ¢, is the sample variance of the data.

Mechanistic modelling. We constructed a model population of
n=1,000standard current-based leaky integrate-and-fire neurons as
previously performed’. We first modelled a purely excitatory spiking

network in which each neuron has membrane potential x; character-
ized by dynamics:

N
g = (0 +ng:1 W, (O + ws(® @

where 7,, =20 ms is the membrane time constant, Wis the synaptic
weight matrix, sis an input term representing external inputs and p
represents recurrent inputs. To model spiking, we set a threshold
(6=0.1), such that whenthe membrane potential x,(¢) > 0, x,(¢t) isset to
zero and the instantaneous spiking rate r; (¢) is set to 1.

Spiking-evoked input was modelled as a synaptic current with
dynamics:

dp,

L 10
T (10)

=-p,(6) +1,(0),

where 7, is the synaptic conductance time constant. In excitatory net-
works, the network time constant 7, was derivedas — 5, where

11-Amax

Amaxisthelargest eigenvalue of the synaptic weight matrix W (ref. 40).

We designed the synaptic connectivity matrix to include a subnet-
work of200 neurons (20% of the network), designated the integration
subnetwork as suggested by empirical measurements, with varying
densities of random connectivity as highlighted in Fig. 3. Weights
of the overall network were sampled from a uniform distribution:
W;- U(0,1/-/N), while weights of the subnetwork were sampled as
W - U(O,1/,/ﬁp), where N, =200.

External input was provided to the network as a smoothened step
function consisting of four pulses at 20 second ISl as provided in vivo.
This stimulus drove arandom 25% of neurons in the network.

Toaccount for finite-size effects and runaway excitation in networks,
wealso simulated models with fast feedback inhibition. This was mod-
elledasrecurrentinhibitionfromasingle gradedinput /., representing
aninhibitory population that receives equal input from and provides
equalinput to, all excitatory units. The dynamics of /,,,, evolves as:

ds, 1<
e = hn(® 5 3 O, )

where 7,=50 ms is the decay time constant for inhibitory currents. In
this model, outside spiking events, the membrane potential evolved as:

dx; o
T ==3(0) +8) Y WD () = Efion ® |+ ws(© (12)

J=1

Model dynamics were simulated in discrete time using Euler’smethod
with a timestep of 1 ms and a small Gaussian noise term n,~N(0,1)/5
was added at each time step. We used g =1and varied g;,, =1,5,10 as
suggested by measurements of inhibitory input to VMHvI*,

Spatial cluster decoder. To examine whether x; and x, neurons are
spatially clustered in a FOV, we used a linear support vector machine
decoder trained to separate cell positions of x; and x, neuronson each
FOV. Shuffled decoder data were generated by randomly assigning
neuronalidentity. Shuffling was repeated 20 times for each FOV and the
performanceis reported as the average accuracy of each fit decoder.

Decoding behaviour from integration dimension. We trained a
frame-wise decoder to discriminate bouts of attack during engagingin
aggression from integration dimension activity during observation of
attack. We first created ‘trials’ frombouts of attack during observation
and engagingin aggression by mergingall bouts that were separated by
less than 5 s and balancing the data. We then trained a support vector
machinetoidentify adecoding threshold that maximally separates the
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values of our normalized ‘integration dimension’signal on frames during
observation of aggression versus all other frames and tested the accuracy
ofthetrained decoder on held-out frames. ‘Shuffled’ decoder datawere
generated by setting the decoding threshold on the same ‘trial’, but with
the behaviour annotations randomly assigned to each behaviour bout.
We repeated shuffling 20 times. We then tested the decoder trained on
datafrom observation on frames during attack while the animals were
engaginginaggression. Wereport performances of actual and shuffled
1D-threshold ‘decoders’ asthe average accuracy score of the fit decoder,
ondatafromallother trials for each mouse. For significance testing, the
mean accuracy of the decoder trained on shuffled data was computed
across mice, with shuffling repeated 1,000 times for each mouse.

Examining the effect of motion on neural encoding during observa-
tion of aggression in head-fixed mice. We used an analysis designed
todetect motion fromvideo recordings of head-fixed mice®. To detect
motion this method uses singular value decomposition (SVD) to extract
groups of pixels showing high differences in luminance or contrast
between consecutive frames. We extracted 500 SVDs from our video
recordings that reflect different sources of motion including move-
ments of the limbs, whiskers, nose, ears and more. To predict neural
activity frombehaviour, we trained generalized linear models to predict
the activity of each neuron k as a weighted linear combination of the
first ten principal components of the 500 SVDs (reflecting over 90% of
the SVDs variance) as follows:

»O=XOF +¢

Here, y, (¢) is the calcium activity of neuron k at time ¢, X (¢) is a fea-
ture vector of 10 binary reduced SVD dimensions at time lags ranging
fromt-DtotwhereD=10s. 8 isabehaviour-filter that described how
aneuron integrates stimulus over a10 s period (example filters are
shown in Extended Data Fig. 5c). ¢ is an error term. The model was fit
using tenfold cross-validation with ridge regularization and model
performance is reported as cvR?.

Statistical analysis

Datawere processed and analysed using Python, MATLAB and GraphPad
(GraphPad PRISM 9). All data were analysed using two-tailed nonpara-
metric tests. Mann-Whitney U-tests were used for binary paired samples.
Friedman tests were used for non-binary paired samples. Kolmogorov-
Smirnov tests were used for non-paired samples. Multiple comparisons
were corrected using Dunn’s multiple-comparison correction.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Source data for this Article have been deposited in the DANDI reposi-
tory with the accession code 001037.

Code availability

Code for fitting models is available at GitHub (https://github.com/
lindermanlab/ssm).
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Extended DataFig.1|See next page for caption.
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Extended DataFig.1|Shared line attractor dynamicsinfreely behaving
mice engaginginorobserving aggression. a. Implantation of miniscope,
field of view (top) and fluorescence image showing histology (bottom) with
jGCaMP7s expressionin VMHvVI. N = Smice. b. Experimental paradigm to record
VMHVvI®? activity in mice engaging in aggression. c. Left: neural & behavioural
raster of example mouse1whenengagingin aggression. Right:example neurons.
d.Experimental paradigm to record VMHvI®”activity in same mice in Extended
DataFig.1cduring observation of aggression. e. Left: neural & behavioural
raster of example mouse 1during observation of aggression. Right: example
neurons. f.Overview of rSLDS analysis. g. Left: rSLDS time constantsin example
mousel.Right: Normalized neural activity projected onto two dimensions (x;
andx,) of dynamical system. h. Behaviour triggered average of normalized x,
and x,dimensions, aligned to introduction of male intruder (n =5 mice, average
traceindarkred andblack + seminshaded area).i. Behaviour triggered average
ofx;dimensions, aligned to firstattack onset (n=5mice, average trace indark
red + seminshadedredarea).j. Left: rSLDS time constants in example mouse 1

during observation of aggression. Right: Neural activity projected onto two
dimensions (x; and x,) of dynamical system. k. Behaviour triggered average of
normalized x, and x, dimensions from observation of aggression, aligned to
introduction of BALB/cinto resident’s cage (n =5 mice, average trace in dark
purpleandblack + seminshaded area).l. Behaviour triggered average of x;
dimensions from observation of aggression, aligned tofirstbout of observing
attack (n=5mice, average traceindark purple + seminshaded purple area).

m. Average activity in the x; dimension during sniffing of the SW mouse, vs
observing the SWmouse aBALB\cintruder (n=4 mice, *p = 0.0286, Two-tailed
Mann Whitney U-test, error bars - sem). n. rSLDS time constants across mice
engaginginaggression (n=5mice, *p=0.0079, Two-tailed Mann Whitney U-test,
errorbars-sem).o.Lineattractor score across mice engaginginaggression
(n=5mice, errorbars-sem). p.rSLDS time constants across mice during
observation of aggression (n = Smice, *p = 0.0079,Two-tailed Mann Whitney
U-test, error bars-sem). q.Lineattractor score across mice during observation
ofaggression (n=5mice, error bars-sem).
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Extended DataFig.2|Flow fields from miniscope experiments during
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region of slow points (lineattractor).
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Extended DataFig. 3| Comparing neuronal activity of x,neurons during
engaging vs. observing aggression. a. Normalized neuronal activity of all x,
neurons from example mouse1when engaginginaggression (left) and observing
aggression (right). Bottom: Raster plots of the activity of allneurons fromx;,
dimensioninmousel.b.Sameasin panelabut forexample mouse2.c.comparing
theactivity of x,neurons between observing and engaging inaggression. Left:
Average activity across mice (n=5mice, shaded areais sem). Right: comparison
oftheactivity during observing attack bouts and engagingin attack (n = Smice,
p =0.42, Two-tailed Mann-Whitney U-test, error bars - sem). d. Activity of x,
neurons aligned toremoval of lastintruder during observation and engaging in
aggression (n=5mice, shaded areais sem). e. Quantification of autocorrelation
half-width forx, neuronsin both conditions during the fullinteraction (mean
achwduringobservation:25 + 0.8s, mean achw duringengagement: 20 +1.7s,
n=5mice, p=0.125, Two-tailed Mann-Whitney U-test, error bars - sem).

f. Quantification of achw for x, neuronsin both conditions aligned to removal
oflastintruder (mean achw during observation: 14 + 1s, mean achw during
engagement:11+1.6s,n=5mice, p=0.187, Two-tailed Mann-Whitney U-test,
error bars-sem).g.Decoding bouts of attack during engagingin aggression
fromintegrationdimensionactivity during observation of attack. Left: Decoder
strategy. ASVM decoder was trained on data fromintegration dimension
activity to separate bouts of observing attack fromnon attack bouts. Right:
Quantification of the decoder accuracy performance (n=5mice, p=0.0079,
Two-tailed Mann-Whitney U-test, error bars - sem). h. Left: Strategy for testing
thedecoder. The SVM decoder that was trained on observation of attack is
tested with datafromengaginginattack. Right: Quantification of the performance
ofthe decoder onengaging vs shuffled data (n=5mice, p=0.0079, Two-tailed
Mann-Whitney U-test, error bars - sem).
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Extended DataFig. 4 |Single cellcomparison ofintegration neurons across
conditions. a. Single cell contribution of x,dimension (rSLDS weights) from
engagement of aggression in example mouse. b. Single cell contribution of x;
dimension (rSLDS weights) from observation of aggression in example mouse.
c.Overlapinneurons contributing to line attractor x; & x,dimension from
rSLDS performing independently in engaging versus observing aggression.
Left: Example mouse, Right: Average across 5 mice, error bars -sem.d. Dot
product of x,neural weight vectors during observation vs. engagementin
aggression.rSLDS weights of the x, dimension during observation were compared
to model weights of the x;and x, dimensions during engagement using a dot
product ofthe two weight vectors. (n =5 mice, ***p = 0.0079, Two-tailed Mann-
Whitney U-test, error bars - sem). e. Example raster of baseline activity from

one mouse freely behaving while solitary inits home cage. f. Example single-cell
traces fromrasterin Ex. DataFig.e. Top - x; neurons, bottom - x,neurons.
g.Comparison of frequency of Ca™ transients (above 1.50in z-score activity)
duringbaseline recordings across mice (mean frequency x;:1.6 + 0.2 events,
mean frequencyx,:2.3+ 0.2 events, n=5mice, *p = 0.012, Two-tailed Mann-
Whitney U-test, error bars - sem). h. Comparison of the mean amplitude of Ca*
transients inx;vs.x,neurons during baselinerecordings, averaged across mice
(meanamplitudex,: 0.58 + 0.04 z-score, mean amplitude x,: 0.71+ 0.08 z-score,
n=>5mice, p = 0.188, Two-tailed Mann-Whitney U-test, error bars - sem).
i.Comparison of the decay time of Ca*? events during baseline recordings
across mice (meantaux;:1.7 + 0.6s, mean taux,: 2.3 + 0.4s,n=5mice, p = 0.34,
Two-tailed Mann-Whitney U-test, error bars - sem).
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Extended DataFig. 5| See next page for caption.
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Extended DataFig. 5| Readouts of behaviour and motioninhead-fixed
mice. a. Top: Experimental paradigm for 2-photon imaging in head-fixed mice
observing aggression.A920nm 2-photon laser was used to monitor activity

of Esr1" neurons in VMHvI. Middle: One frame from a video recorded during
observation of aggression. Bottom: An example of one motion SVD. b. Top:
Neural activity raster during observation of aggression. Bottom: examples

of SVD outputs over time during observation of aggression. c. Top: Predicted
neuronal activity of single neurons and their variance explained by ageneralized
linear model (GLM) from SVDs readout over time. Bottom: Two example cells
withdifferentlevels of variance explained. d. Estimated cumulative distribution
ofvariance explained by the GLM of either x, or x,neurons across all mice.

e. Statistical comparison of variance explained by GLM of x; activity or x,
activity neurons per mouse (n =7 mice, p = 0.8125, Two-tailed Mann-Whitney
U-test, error bars-sem). f. Top: One frame fromavideorecorded during group
photo-activation of x; neurons. Middle: An example of one motion SVD.
Bottom: Time-evolving activity of top 3 SVDs aligned to x;activation (vertical
red bars =photoactivation pulses). g. Projection of top 5 motion SVDs and
stimulus triggered average of each SVD aligned to the start of x; activation.

h. Averageresponseintop 5SVDs during pre-stimulus and stimulus periods
(n=8mice, p>0.05, Two-tailed Mann-Whitney U-test, error bars - sem).i. Same
asg,butforactivation of x,neurons. j. Same as h, but for activation of x,neurons.
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Extended DataFig. 6 |See next page for caption.
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Extended DataFig. 6 | Controls for off-target effects of 2P photoactivation.
a.GRIN lens changes the spatial resolution based on the axial depth. Top:
imaging a calibration slide with 40 pm fluorescent squares at different axial
distances below the GRIN lens. Bottom: imaging in-vivojGCaMP7s expressing
EsrI'neuronsinthe VMHvl at different axial distances below the GRIN lens.
b.Magnificationratio at differentimaging depths calculated from the fluorescent
calibrationsslide. c. Quantification of the relationship betweenimaging depth
and magnification error. Linear regressionis used to estimate the degree of
aberration caused by the GRIN Iens. d. Example field of viewillustrating the
experimental procedure for mapping the spatial resolution of 2P targeted
photo-stimulation through the GRIN lens. Reference neurons were targeted
first centred ontheir somata, and then again stepwise at different distances
from the soma centre along each of the four cardinal directions, using 10 pm
diameter stimulation spirals. N =17 cells. e. Average response of all tested
neurons to stimulationateachlocation fromthe soma.Shaded arearepresents

standard error of the mean. The red-boxed trace indicates the response observed
when the stimulationis centred on the reference cell (O um). f. Estimated
cumulative distribution of the reference cell responses at different distances
fromsoma. Lighter shades of red represent responses at distances progressively
further from the soma.n=17 neurons. g. Raster of neural activity of all 17
reference neuronstested using the procedure in Ex. DataFig. e. Note that at
15pmthe averageresponseinthereferencecellsis close tozero. h. Normalized
average activity of all neurons at different distances from soma. Eachrowisa
different experimenton adifferent referencecell.i. Representative examples
of field of views from two mice. Green - all x; neurons, Red - all x, neurons, black
-nonx;orx,neurons. Fov-field of view. j. Exampleillustrating how distances
are calculated for estimating the spatial clustering of x,and x,neurons.
k.Quantification of average distance withinx;and x,neurons and between x;
andx,neurons, across mice (n =8 mice, p > 0.05: Kruskal-Wallis test with
Dunn’s correction for multiple comparison, error bars-sem).



examination of spatial clustering among x1 and x= neurons

a b

classify with SVM

X2 accuracy: 1
perfect

separation

-

classifier
threshold

not
seperated

classifier accruacy

SVM accuracy

n.s
1.0
0.5
0.0-
data shuffle

comparison of neural activity under natural conditions (observation of aggression) and

optogenetically evoked conditions

system in
line attractor

d

SW attack

e

5 ,,,,,,,,

optogenetic stimulus

N, . n.s
° ° °®
= 3 ° 0:130
N, iy e 2 g T
WW s 2q f
n g
3"“‘- ) i $ 14
N
n, s g+ ——

observe optogenetic
aggression activation

100 150 Time (s)20
Extended DataFig.7|Spatial clustering of neurons and activity comparison.
a.Supportvector machine decoder trained to separate cell positions of x;
versusx,neurons.Scenariolshowsacartoonwhere cellsare perfectly separated
by the SVWM decoder and scenario 2 shows a cartoon where cells are inseparable
based ontheir spatial location and shows low classifier accuracy.b. Accuracy of
SVMdecoder trained on data versus shuffled control (n=10 mice, p=0.156:

Two-tailed Mann-Whitney U-test, error bars - sem). c. Classification width of

40 60 80 100

SVMdecoder trained on data versus shuffled control (n=10 mice, p=0.578:
Two-tailed Mann-Whitney U-test). d. Neural activity of five x, neurons selected
forgrouped optogenetic targeting during observation of aggression. e. Neural
activity of the same five x;neuronsin panel d during grouped optogenetic
activation. f. Comparison of peak z-score of x, neurons selected for grouped
optogeneticactivation during observation of aggressionand during optogenetic
activation (n=8mice, p > 0.05: Two-tailed Mann-Whitney U-test, error bars - sem).
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Extended DataFig. 8| Characterization of line attractor properties.
a.Averageactivity projected ontox,dimension fromactivation of x,neurons
across mice using 8sinter stimulus interval (n =7 mice). Shaded area - sem.
Right: Quantification of average z-scored activity of projected x,dimension
duringbaseline or inter stimulusintervals (n =7 mice,n.sp=0.3,**p=0.0012,
**p=0.0012,*p =0.0192 Kruskal-Wallis test with Dunn’s correction for multiple
comparison, error bars-sem).b. Average activity projected onto x,dimension
fromactivation of x,neurons across mice using 8sinter stimulusinterval (n=7
mice).Shaded area - sem. Right: Quantification of average z-scored activity of
projected x,dimension during baseline orinter stimulusintervals (n.s p > 0.05,
n=7mice, Kruskal-Wallis test with Dunn’s correction for multiple comparison,
error bars-sem). c. Dataand model prediction of applying stimulation paradigm
inFig.2ctorSLDS model trained on observing aggression. d. Dataand model
prediction of applying stimulation paradigm in Fig. 2j to rSLDS model trained
onobservingaggression. e.x;integration dimension activity with 1mw per
neurons (blue) and 5SmW per neuron (red). Shaded area - sem. n = 8 mice.
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f.Quantification of average z-scored activity of projected x,dimension neurons
in1mW and 5mW per neuron during baseline or various inter stimulus intervals
(n=8mice, *p=0.0295,*p =0.0186, *p = 0.045,n.s p=0.7, Two-tailed Mann-
Whitney U-test, error bars - sem). g. Paradigm for examining activity inx,
dimension upon grouped holographic activation of x;neurons. h. Average
z-score activity of neural activity projected onto x,dimension across mice
(n=8mice).Shaded area - sem.i. Quantification of activity in non-targeted x,
dimensionupon grouped holographic activation of x,neurons (n.s, n =8 mice,
Kruskal-Wallis test with Dunn’s correction for multiple comparison, error bars -
sem).j. Paradigm for examining activity in x,dimension upon grouped
holographicactivation of x,neurons. k. Average z-score activity of neural
activity projected ontox,dimension across mice (n =8 mice, Shaded area - sem).
I. Quantification of activity in non-targeted x; dimension upon grouped
holographicactivation of x,neurons (n.sp=0.276,n.s p = 0.276, **p=0.0072,
*p=0.03,n=8mice, Kruskal-Wallis test with Dunn’s correction for multiple
comparison, error bars-sem).
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Extended DataFig.9|See next page for caption.
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Extended DataFig. 9 | Examination of finite nature and stability of line
attractor. a. Top: model prediction, assuming thereis afinite length of the
attractor, after the systemreachesa certain pointalong the attractor, further
pulses ofactivity willnot cause a further ramp. Bottom: If the line attractor is
infinite, then eachactivationshould push the system further along the attractor.
b.Example from one mouse comparing the prediction of finite (top) and infinite
(bottom) model of thelineattractor. Pink lines represent time of photoactivation.
Mse - mean square error between model and the data. c. Comparison of the mse
ofthe whole trace between the data and either the finite or infinite models
(n=8mice, *p<0.001, Two-tailed Mann-Whitney U-test, error bars - sem).
d.Same as Extended DataFig. 9c but comparing only after the third pulse. Note
thatthe scale of the y axis in Extended Data Fig. 9d is twice as big asin Extended
DataFig. 9c(n=8mice, **p<0.001, Two-tailed Mann-Whitney U-test, error bars -
sem). e. Testing off-manifold perturbations further along the attractor.
Experimental design: first we ramp the activity mid-way along the line attractor
usingactivation of x; neurons, then test the population vector trajectory after
targeting of x,neurons. f. Left: stimulation paradigm. Right: Scheme of the
quantification approach for the effect of off manifold targeting further along
theattractor. g. State space and the activity ramp following x; photo-activation

(showing only three pulses to avoid clutter). h. Same as Extended Data Fig. 9g
but forx,photo-activation.i. Quantification of the activity distance frombaseline
after each photostimulation (n=8 mice, Kruskal-Wallis test with Dunn’s correction
for multiple comparison, **p =0.0025,n.s p > 0.05, error bars - sem). . Effect of
grouped holographic activation of randomly selected neurons onactivated
neurons.Shaded area - sem, n=5mice.k. Average z-score activity of non-
targeted x; dimension uponactivation of randomneurons. Shaded area - sem
n=5mice.l. Average z-score activity of non-targeted x,dimension upon
activation of random neurons. Shaded area - sem, n=5mice. m. Left:
Quantification of activity in non-targeted x; dimension upon grouped holographic
activation of random neurons (n.s, p > 0.05, Kruskal-Wallis test with Dunn’s
correction for multiple comparison, n = 5mice, error bars - sem). Right:
Comparison of grouped activation of x,neurons (green, reproduced from
Fig.2d, right) and grouped activation of random neurons on activity of x;
dimension (black, reproduced from Extended Data Fig.3m, left, error bars - sem).
n. Quantification of activity in non-targeted x,dimension upon grouped
holographicactivation of randomneurons (n.s, p > 0.05, Kruskal-Wallis test
with Dunn’s correction for multiple comparison, n=5mice, error bars-sem).
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Extended DataFig.10 | Impact of functional connectivity measurements
onnon-targeted neurons. a. Experimental design. We grouped activated five
x;neurons (three are shown forillustrative purposes) and examined the activity
ofnon-targeted photoactivated x, neurons following exclusion of of f-target
neurons. b.Z-score activity of x,dimension photoactivated neurons not targeted
for photo-stimulation. N = 8 mice. Shaded area - sem. c. Quantification of
average z-scored activity of aweighted average of non-targeted x; dimension
neurons during baseline or variousinter- photo-stimulationintervals. (n =8
mice, error bars-sem, ***p<0.001). d. Experimental design for decoding analysis.
We examined whether the activity of non-targeted but photoactivated x; or x,
dimension neurons canbe usedto decodeintegration of direct photo-stimulation
by groups of five targeted x; neurons (three are shown for simplicity), using a
supportvector machine (SVM) decoder. e. One example mouse showing the
activity of targeted x; dimension neurons (black), activity decoded from non-
targeted x, neurons (green), and activity decoded from x,non-targeted
neurons (orange). f. Same as Extended Data Fig. 9e but averaged over 8 mice.
Shaded area - sem. g. Decoding from non-targeted x; neurons can explain
significantly more variance (80% versus 40%) than non-targeted x,or randomly
selected neurons (n=8mice, *p=0.01,**p =0.0003, n.s. p>0.05, Kruskal Wallis
test with Dunn'’s correction for multiple comparisons, error bars - sem).
h.Fraction of non-targeted neurons with either positive or negative response
(defined by whether their mean response post photostimulation of targeted x;
neuronis1.5std above or below baseline activity). i. Averaged activity of non-
targeted neurons with eithera positive (left), negative (middle) or no significant
response (right). Shaded area - sem.N =8 mice. j. Cartoonillustrating how
therelationship between spatial distance and response in putative “follower”

Xx;neuronsis assessed. k. Example field of view showing z-score responsein all
neuronsinafield of view. Thefilled-in black cellis the targeted x; neuron and
theshadedregion around it shows a50 pm stringent zone of exclusion.
Putative follower cells are shaded according to their z-score response (see
colourscale). Note that some of the most strongly activated cells are located
>100 pm fromthe targeted cell.l. Histogram of distance between targeted x;
neuronand all putative “follower” x,neurons (mean: 139 + 35 um). m. Scatter
plotshowing the relationship between distance and response in putative
“follower” x,neurons. Blue line shows the regression line.11% of all assessed
putative “follower” x;neurons are within 50 um of the targeted x; neurons.
n.Average response fromscatter plotin ‘m’. Black line -mean over moving
window of 15um. Shaded area - sem. 0. Average response in non-targeted
x;neurons from photo-stimulation of single x; neuron with (black trace)

and without (green trace) exclusion of neurons withina 50 pmradius of the
targeted neuron (pink shaded regionin Extended Data Fig.101-n). Shaded
area-sem.N=8mice. p. Quantification of data from Extended Data Fig.100
atvarioustime periods after each photo-stimulation pulse. n.s: not significant,
Kruskal-Wallis test with Dunn’s correction for multiple comparisons,

error bars-sem.N=8mice q.x;integration dimension activity withactivation
of one neuron (blue) versus five neurons (red). N = 8 mice. Shaded area - sem.
r.Quantification of average z-scored activity of projected x,dimension
neurons with one neuron (blue) versus five neurons (red) during baseline
orvariousinter stimulus intervals. N =8 mice, *p =0.0239, **p=0.0063,
**p=0.0074,*p = 0.0341, Kruskal-Wallis test with Dunn’s correction for
multiple comparisons, error bars-sem.
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Extended DataFig.12 | Additional quantifications of the correlation
between functional connectivity and the stability of the decay and ramp.
a.lllustration of different quantification approaches to the change in activity
of non-targeted x; neurons from Fig. Se as either the average z-score activity
following different stimulus pulses, or the area under the curve (auc). Red
vertical lines, photostimulation pulses. b. Left: Correlation between the rate of
ramping of theintegration dimension obtained from observation of aggression
and average z-score of non-targeted x; neurons measured using the average
z-score post third stimulus (r* 0.01, n.s, n =8 mice). Right: Correlation between

rSLDS time constant obtained from observation of aggressionand average
z-score across non-targeted x,neurons measured using the average z-score
post third stimulus (r% 0.87,***p < 0.001, n = 8 mice). c. Same as b) but calculated
from non-targeted x, neurons measuring the auc of activity post first stimulus.
d.Sameasc), calculated from non-targeted x, neurons measuring the average
z-score activity. e. Same as ¢) but calculated from non-targeted x,neurons
measuring the AUC of activity post third stimulus. f. Same as e) but calculated
using the average z-score activity. g. Same as e) but calculated post first stimulus.
h.Sameas g) but calculated using the average z-score activity.
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