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Causal evidence of a line attractor encoding 
an affective state

Amit Vinograd1,2,3,6, Aditya Nair1,2,3,6, Joseph H. Kim1,2, Scott W. Linderman4,5 & 
David J. Anderson1,2,3 ✉

Continuous attractors are an emergent property of neural population dynamics that 
have been hypothesized to encode continuous variables such as head direction and 
eye position1–4. In mammals, direct evidence of neural implementation of a continuous 
attractor has been hindered by the challenge of targeting perturbations to specific 
neurons within contributing ensembles2,3. Dynamical systems modelling has revealed 
that neurons in the hypothalamus exhibit approximate line-attractor dynamics in 
male mice during aggressive encounters5. We have previously hypothesized that 
these dynamics may encode the variable intensity and persistence of an aggressive 
internal state. Here we report that these neurons also showed line-attractor dynamics 
in head-fixed mice observing aggression6. This allowed us to identify and manipulate 
line-attractor-contributing neurons using two-photon calcium imaging and 
holographic optogenetic perturbations. On-manifold perturbations yielded 
integration of optogenetic stimulation pulses and persistent activity that drove the 
system along the line attractor, while transient off-manifold perturbations were 
followed by rapid relaxation back into the attractor. Furthermore, single-cell 
stimulation and imaging revealed selective functional connectivity among 
attractor-contributing neurons. Notably, individual differences among mice in 
line-attractor stability were correlated with the degree of functional connectivity 
among attractor-contributing neurons. Mechanistic recurrent neural network 
modelling indicated that dense subnetwork connectivity and slow neurotransmission7 
best recapitulate our empirical findings. Our work bridges circuit and manifold 
levels3, providing causal evidence of continuous attractor dynamics encoding an 
affective internal state in the mammalian hypothalamus.

Neural circuit function has been studied from two vantage points. One 
focuses on understanding behaviourally specialized neuron types and 
their functional connectivity8–10, whereas the other investigates emer-
gent properties of neural networks, such as attractors1,3,11. Continuous 
attractors of different topologies are theorized to encode a variety 
of continuous variables, ranging from head direction12, location in  
space2, reward history14 to internal states5. Recent data-driven method-
ologies have allowed for the identification of such attractor-mediated 
computations directly in neural data5,13–16. Consequently, attractor 
dynamics have received increasing attention as a major type of neural 
coding mechanism2–4,12,13.

Despite this progress, establishing that these attractors arise from 
the dynamics of the observed network remains a formidable chal-
lenge2–4. This calls for combining large-scale recordings with perturba-
tions of neuronal activity in vivo. Although this has been accomplished 
for a point attractor that controls motor planning in cortical area 
anterolateral motor cortex17,18, spatial ensembles in visual cortex 
that encode visually guided behaviours19,20 and for a ring attractor 

in Drosophila21,22, there is no study reporting such perturbations for 
a continuous attractor in any mammalian system. While theoretical 
work on continuous attractors in mammals is well developed2, the 
lack of direct, neural-perturbation-based experimental evidence of 
such attractor dynamics has hindered progress towards a mecha-
nistic circuit-level understanding of such emergent manifold-level  
network features3.

Oestrogen receptor type 1 (Esr1)-expressing neurons in the vent-
rolateral subdivision of the ventromedial hypothalamus (VMHvlEsr1) 
comprise a key node in the social behaviour network and have been 
causally implicated in aggression23,24. Calcium imaging of these neurons 
in freely behaving animals has revealed mixed selectivity and variable 
dynamics, with time-locked attack signals sparsely represented at the 
single-neuron level25,26. Application of dynamical system modelling27 
has revealed an approximate line attractor in the VMHvl that correlates 
with the intensity of agonistic behaviour, suggesting a population- 
level encoding of a continuously varying aggressive internal state5.  
This raises the question of whether the observation of a line attractor  
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in a statistical dynamical systems model fit to VMHvlEsr1 neuronal activ-
ity reflects inherited dynamics or can be instantiated locally.

This question can be addressed, in principle, using all-optical meth-
ods to observe and perturb line-attractor-relevant neural activity3,28–30. 
A challenge in applying these methods during aggression is that cur-
rent technology requires head-fixed preparations, and head-fixed 
mice cannot fight. To overcome this challenge, we took advantage 
of a recent observation that VMHvl-progesterone receptor neurons 
(which encompass the Esr1+ subset)31–33 mirror observed interindividual 
aggression6, to instantiate the line attractor in head-fixed mice. Using 
this preparation, we performed model-guided, closed-loop on- and 
off-manifold perturbations34 of VMHvlEsr1 activity. These experiments 
demonstrate that the VMHvl line attractor indeed reflects causal neu-
ral dynamics in this nucleus. They also identified selective functional 
connectivity within attractor-weighted ensembles, suggesting a local 
circuit implementation of attractor dynamics. Modelling suggests 
that this implementation may incorporate slow neurotransmission. 
Collectively, our findings elucidate a circuit-level foundation for a 
continuous attractor in the mammalian brain.

Line attractor for observing aggression
Recent studies have demonstrated that the VMHvl contains neurons 
that are active during passive observation of, as well as active participa-
tion in, aggression and that reactivating the former can evoke aggres-
sive behaviour6. However, those findings were based on a relatively 
small sample of VMHvl neurons, which might comprise a specific sub-
set distinct from those contributing to the line attractor (the latter 
represent around 20–25% of Esr1+ neurons5). To assess whether these 
mirror-like responses can be observed in Esr1+ neurons that contribute 
to line-attractor dynamics, we performed microendoscopic imaging35 
of VMHvlEsr1 neurons expressing jGCaMP7s in the same freely behaving 
animals during engagement in followed by observation of aggression 
(Extended Data Fig. 1a–e). Analysis using recurrent switching linear 
dynamical systems (rSLDS)27 to fit a statistical model to each dataset 
(Extended Data Fig. 1f) revealed an approximate line attractor under 
both conditions, exhibiting ramping and persistent activity aligned 
and maintained across both performed and observed attack sessions 
(Extended Data Figs. 1g–q, 2 and 3a–f). Activity during observation 
of aggression in the integration dimension (x1), which contributes to 
the line attractor, could be reliably used to decode from held-out data 
instances of both observation of and engagement in attack, suggest-
ing that this dimension encodes a similar internal state variable under 
both conditions (Extended Data Fig. 3g,h). Moreover, the integration 
dimension was weighted by a consistent and aligned set of neurons 
under both conditions, suggesting that a highly overlapping set of 
neurons (70%) contributes to line-attractor dynamics during observing 
or engaging in attack (Extended Data Fig. 4a–d).

The dynamical systems analysis also revealed a dimension orthogo-
nal to the integration dimension (x2) that displayed faster dynamics 
time locked to the entry of the intruder(s) in both conditions (Extended 
Data Fig. 1g–l). To examine whether the neurons contributing to the 
two dimensions (x1 and x2 neurons) can be separated on the basis of 
physiological properties, we examined their baseline activity when 
solitary animals were exploring their home cage before any interac-
tion. We did not detect a difference in amplitude or decay constant 
(tau) between x1 and x2 neurons (Extended Data Fig. 4e–i). However, 
we did see a slightly but significantly higher frequency of spontaneous 
calcium transients in x2 neurons (Extended Data Fig. 4f,g), suggesting 
that x2 neurons are more spontaneously active than x1 neurons when 
no interaction is taking place.

While these observed attractor dynamics could be generated in the 
VMHvl, they might also arise from unmeasured ramping sensory input 
or dynamics inherited from an input brain region36. Although behav-
ioural perturbations in previous studies have hinted at the intrinsic 

nature of VMHvl line-attractor dynamics5, a rigorous test requires 
direct neuronal perturbations34,37 targeted to cells that contribute to 
the attractor. Direct on-manifold perturbation of a continuous attractor 
has previously been performed only in the Drosophila head direction 
system12,21. In mammals, although a point attractor has been perturbed 
off-manifold using optogenetic manipulation17,18,28, direct single-cell 
perturbations of neurons contributing to a continuous attractor in vivo 
have not been reported.

To do this, we used two-photon (2P) imaging in head-fixed mice of 
VMHvlEsr1 neurons expressing jGCaMP7s38 after observation of aggres-
sion and removal of the demonstrator mice (Fig. 1a–c). As described 
above, during observation of aggression by the head-fixed mice, rSLDS 
analysis identified an integration dimension with slow dynamics (x1) 
aligned to an approximate line attractor, and an orthogonal dimension 
with faster dynamics (x2) (Fig. 1d–h,k). We used the mapping between 
neural activity and the underlying state space to directly identify neu-
rons contributing to each dimension (Fig. 1i,j). Neurons contributing 
to the integration dimension displayed more persistence than those 
aligned with the faster dimension (Fig. 1g,l,m). Importantly, only a small 
fraction of the neural activity could be explained by movements of the 
observer mouse (Extended Data Fig. 5a–e). Thus, a line attractor can 
be recapitulated in head-fixed mice observing aggression, opening 
the way to 2P-based perturbation experiments.

Holographic activation shows integration
Next, to determine whether VMHvlEsr1 line-attractor dynamics are intrin-
sic to this hypothalamic nucleus, after removing the demonstrator 
mice, we performed holographic re-activation of a subset of neurons 
contributing to the integration dimension (x1) using soma-tagged 
ChRmine39, which was co-expressed with jGCaMP7s (Fig. 1b (bottom)). 
These neurons were identified in real-time using rSLDS fitting of data 
recorded during observation of aggression (in a manual closed loop), 
followed by 2P single-cell-targeted optogenetic reactivation of those 
neurons (Fig. 2a). In each field of view (FOV), we concurrently targeted 
five neurons, chosen on the basis of the criteria that they (1) contrib-
uted most strongly to a given dimension (x1 or x2); and (2) could be 
reliably reactivated by photostimulation (Fig. 2a). Repeated pulses 
of optogenetic stimulation (2 s, 20 Hz, 5 mW) were delivered with a 
20 s interstimulus interval (ISI) (Fig. 2b–d). Under these conditions, 
we observed minimal off-target effects (Extended Data Fig. 6a–h) and 
did not observe spatial clustering of x1 or x2 neurons (Methods and 
Extended Data Figs. 6i–k and 7a,b).

In this paradigm, optogenetically induced activity along the x1 
(but not the x2) dimension is predicted to exhibit integration across 
successive photostimulation pulses, based on the time constants of 
these dimensions extracted from the fit rSLDS model (Fig. 1e). Con-
sistent with this expectation, optogenetic reactivation of cohorts of 
five individual x1 neurons yielded robust integration of activity in the 
entire x1 dimension-weighted population, as evidenced by progres-
sively increasing peak activity during the 20 s ISI after each consecutive 
pulse (Fig. 2c,d; n = 8 mice). Activity decayed slowly after each peak but 
did not return to pre-stimulus baseline. Activated x1 neurons exhibited 
activity levels comparable to their response during observation of 
aggression (Extended Data Fig. 7d–f). Similar results were obtained 
using an 8 s ISI (Extended Data Fig. 8a). This activity also scaled with 
different laser powers (Extended Data Fig. 8e,f). Providing the same 
(digital optogenetic) input to the fit rSLDS model also resulted in inte-
gration by the model along the x1 dimension, similar to that observed 
in the data (Extended Data Fig. 8c). Importantly, x1 stimulation did not 
evoke appreciable activity in x2 dimension neurons (Extended Data 
Fig. 8g–i).

To visualize in neural-state space the effect of reactivating x1 neurons 
in the absence of demonstrator mice, we projected the data into a 2D 
flow-field based on the dynamics matrix fit to data acquired during 
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Fig. 1 | Attractor dynamics in head-fixed mice observing aggression. a, The 
experimental paradigm for 2P imaging in head-fixed mice observing aggression. 
b, Representative FOV through a GRIN lens in the 2P set-up (top). Bottom, 
fluorescence image of a coronal slice showing expression of jGCaMP7s and 
ChRmine. Scale bars, 100 µm. c, Neural and behavioural raster from an example 
mouse observing aggression in the 2P set-up (left). The arrows indicate insertion 
of submissive BALB/c intruders into the observation chamber for interaction 
with an aggressive Swiss Webster (SW) mouse. Right, example neurons from the 
raster to the left. d, Neural activity projected onto rSLDS dimensions obtained 
from models fit to 2P imaging data in one example mouse. e, rSLDS time constants 
across mice. n = 9 mice. Statistical analysis was performed using two-tailed 
Mann–Whitney U-tests. Data are mean ± s.e.m. f, The line-attractor score 
(Methods) across mice. n = 9 mice. Data are mean ± s.e.m. g, Behaviour-triggered 
average of x1 and x2 dimensions, aligned to the introduction of BALB/c mice into 
the resident’s cage. n = 9 mice. Data are the average activity (dark line) ± s.e.m. 
(shading). h, Flow fields from rSLDS model fit to 2P imaging data during 
observation of aggression from one example mouse. The larger blue arrows 

next to the neural trajectory indicate the direction flow of time. The smaller 
arrows represent the vector field from the rSLDS model. i, Identification of 
neurons contributing to x1 dimension from rSLDS model (top). The neuron’s 
weight is shown as an absolute (abs) value. Bottom, activity heat map of five 
neurons contributing most strongly to the x1 dimension. Right, neural traces of 
the same neurons and an indication of when the system enters the line attractor. 
j, As in i but for the x2 dimension. k, Dynamic velocity landscape from 2P imaging 
data during observation of aggression from one example mouse. Blue, stable 
area in the landscape; red, unstable area in the landscape. The black line shows 
the trajectory of neuronal activity. l, The cumulative distributions of the 
autocorrelation half width (ACHW) of neurons contributing to the x1 (green) 
and x2 (red) dimensions. n = 9 mice, 45 neurons each for the x1 and x2 distributions. 
m, The mean autocorrelation half width (HW) across mice for neurons 
contributing to the x1 and x2 dimensions. n = 9 mice. Statistical analysis was 
performed using a two-tailed Mann–Whitney U-test; **P = 0.0078. Data are 
mean ± s.e.m. ****P < 0.0001, **P < 0.01.
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Fig. 2 | Holographic perturbations reveal integration dynamics in the 
VMHvl. a, The experimental paradigm for 2P perturbation in head-fixed mice. 
b, FOV of five x1 neurons selected for 2P activation in example mouse 1. Scale bar, 
100 µm. c, Neural activity projected onto the x1 dimension after holographic 
activation of five x1 neurons in example mouse 1. The pink vertical lines show 
the time of activation. d, The average activity projected onto the x1 dimension 
from activation of 5 x1 neurons (left). Data are average (dark green) ± s.e.m. 
(shaded green area). n = 8 mice. Right, the average z-scored activity of the 
projected x1 dimension during the baseline or ISIs. n = 8 mice. Statistical 
analysis was performed using Kruskal–Wallis tests with Dunn’s correction; 
*P = 0.0363, **P = 0.0013 (bottom), **P = 0.0067 (top). Data are mean ± s.e.m.  
e, Schematic of quantifying perturbation along line attractor in neural state 
space. f, Flow fields from example mouse 1, showing perturbations along the 
line attractor after activation of 5 x1 neurons. The larger blue arrows next to  
the neural trajectory indicate the direction flow of time. The smaller arrows 
indicate the vector field from the rSLDS model. g, The Euclidian distance 
between time points tinitial and tstim-end across mice. n = 8 mice. Statistical analysis 
was performed using Kruskal–Wallis tests with Dunn’s correction; not significant 
(NS), P = 0.061; *P = 0.029, **P = 0.0018 (bottom), **P = 0.0059 (top). Data are 

mean ± s.e.m. h, As in g but for timepoints tinitial and tpost-stim. n = 8 mice. Statistical 
analysis was performed using Kruskal–Wallis tests with Dunn’s correction; NS, 
P = 0.1965; **P = 0.0082, ***P = 0.0004, *P = 0.016. Data are mean ± s.e.m. i, FOV 
of five x2 neurons selected for activation in example mouse 1. Scale bar, 100 µm. 
j, Neural activity projected onto the x2 dimension after holographic activation 
of x2 neurons in example mouse 1. k, The average activity projected onto the x2 
dimension from activation of x2 neurons (left). Data are average (dark red) ± s.e.m. 
(shaded red area). n = 7 mice. Right, the average z-scored activity of the projected 
x2 dimension during the baseline or ISIs. n = 7 mice. Statistical analysis was 
performed using Kruskal–Wallis tests with Dunn’s correction; P > 0.99. Data are 
mean ± s.e.m. l, As in e but for x2 activation. m, Flow fields from example mouse 
1, showing x2 activation. The red arrows indicate the direction of the flow of 
time. n, As in g but for x2 activation. n = 7 mice. Statistical analysis was performed 
using Kruskal–Wallis tests with Dunn’s correction; NS, P = 0.1554; *P = 0.042 
(bottom), *P = 0.029 (middle), *P = 0.029 (top). Data are mean ± s.e.m. o, As in h 
but for x2 activation. n = 7 mice. Statistical analysis was performed using 
Kruskal–Wallis tests with Dunn’s correction; NS, P > 0.05 (bottom), P = 0.508 
(middle), P = 0.0508 (top); *P = 0.0383. Data are mean ± s.e.m. NS, P > 0.05; 
*P < 0.05, ***P < 0.001, ****P < 0.0001.
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the observation of aggression. Activation pulses transiently moved 
the population activity vector (PAV) ‘up’ the line attractor, followed 
by relaxation back down the attractor to a point that was higher than 
the initial position of the system (Fig. 2e,f). To quantify this effect, 
we calculated the Euclidean distance in state space between the ini-
tial timepoint during the baseline period (tinitial) and the timepoint 
at the end of stimulation or at the end of the ISI after each pulse 
(tstim-end and tpost-stim, respectively) (Fig. 2e–h). This revealed that the 
x1 perturbations resulted in progressive, stable on-manifold move-
ment along the attractor with each consecutive stimulation, as meas-
ured by the increase in both metrics (Fig. 2g,h). However, we found 
that integration of optogenetic stimulation pulses saturated in the 
x1 dimension after the third pulse, suggesting that the line attractor 
occupies a finite portion of the neural state space (Extended Data  
Fig. 9a–d).

Importantly, activation of x2 neurons did not lead to integration 
(Fig. 2i–k) as predicted by the time constant derived from the fit 
rSLDS model (Fig. 1e (red bar)). Instead, after each pulse, we observed 
stimulus-locked transient activity in the x2 dimension followed by a 
decay back to the baseline during the ISI period, across stimulation 
paradigms (Fig. 2k and Extended Data Fig. 8b), with little to no effect 
on x1 neurons (Extended Data Fig. 8j–l). In 2D neural-state space, we 
observed that x2 neuron activation caused transient off-manifold move-
ments of the PAV orthogonal to the attractor axis during each pulse 
(Fig. 2l–o). After each stimulus, the PAV relaxed back into the attractor, 
near to the initial location that it occupied before the stimulus.

To examine further the stability of different points along the line 
attractor, we performed photostimulation of x2 neurons after first 
moving activity in neural-state space further along the attractor using 
photostimulation of x1 neurons (Extended Data Fig. 9e, f). This x2 per-
turbation also resulted in transient off-manifold movements of the PAV 
orthogonal to the line attractor, followed by relaxation to the position 
occupied after the previous x1 stimulation (but before the x2 stimula-
tion), rather than simply relaxing back to the baseline (Extended Data 
Fig. 9g–i). This experiment confirms the attractive nature of different 
points along the line. Lastly, activation of randomly selected neurons 
that were not weighted by either dimension did not produce activ-
ity along either the x1 or x2 dimension, emphasizing the specificity 
of our on- and off-manifold holographic activation (Extended Data 
Fig. 9j–n). Activation of either ensemble did not result in overt changes 
in the behaviour of the head-fixed mouse (Extended Data Fig. 5f–j). 
Together, these findings demonstrate that a subset of VMHvlEsr1 neurons 
(x1) can integrate direct optogenetic stimulation, moving the PAV along 
the line attractor, while a different subset (x2) pushes the PAV out of  
the attractor.

Line-attractor neurons form ensembles
The integration observed in the abovementioned experiments could 
reflect a cell-intrinsic mechanism, or it could emerge from recur-
rent interactions within a network40. To determine whether the lat-
ter mechanism contributes to the line attractor, we first examined 
whether putative x1 follower cells (that is, non-targeted neurons 
that were photoactivated by stimulation of targeted x1 neurons) 
exhibited integration. Indeed, even after excluding the targeted x1 
neurons themselves as well as potentially off-target neurons located 
within a 50 µm radius of the targeted cell (Extended Data Figs. 6a–h 
and 10j–n), we observed integration in the remaining x1 neurons 
(Extended Data Fig. 10a–c). Moreover, optogenetically evoked inte-
grated activity in targeted x1 neurons could be reliably decoded from 
the activity of their follower x1 neurons (Extended Data Fig. 10d–f). 
This decoding was significantly better than that obtained using the 
activity of non-targeted x2 neurons; furthermore, the x2 activity-based 
decoder performance was slightly worse than decoders trained on 
neurons chosen randomly (Extended Data Fig. 10g). These analyses 

suggest that selective functional connectivity between integration 
dimension-weighted x1 neurons contributes to line-attractor dynamics in  
the VMHvl.

To assess more precisely the extent of functional connectivity 
among VMHvlEsr1 neurons, we activated unitary x1 or x2 neurons and per-
formed imaging of non-targeted neurons (Fig. 3a). These experiments 
revealed a slowly decaying elevation of activity during the ISI period in 
non-targeted x1 neurons after each pulse of activation (Fig. 3b,d) that 
was mostly positive (Extended Data Fig. 10h,i). Notably, the strength of 
functional connectivity was not positively correlated with the distance 
from the targeted photostimulated cell (Extended Data Fig. 10j–n) and 
was still observed even after excluding neurons in a 50 µm zone sur-
rounding the targeted neuron to eliminate potential off-target effects 
due to ‘spillover’ photostimulation (Extended Data Fig. 10o,p). Com-
paring the activity of non-targeted photoactivated x1 neurons during 
unitary x1 neuron photoactivation versus during targeted activation 
of the five-x1 neuron cohorts revealed that the response strength of 
the non-targeted x1 neurons scaled with the number of targeted x1 neu-
rons (Extended Data Fig. 10q,r). Importantly, the observed functional 
coupling between x1 neurons could not be explained by local cluster-
ing of non-targeted x1 neurons near the targeted cell (Extended Data 
Figs. 6i–k and 10k–l).

In contrast to the observed x1-to-x1 functional connectivity, we 
observed little activity in non-targeted x2 neurons after activation of 
unitary x1 or x2 neurons (Fig. 3c,e,g,j), suggesting that functional x1–x1 
connectivity is selective. While there was a trend to a gradual increase in 
activity in non-targeted x1 neurons after repeated activation of unitary 
x2 neurons (Fig. 3f–h), that increase was not statistically significant 
(Fig. 3i,j).

The functional connectivity that we observed could arise either 
from a population of sparsely but strongly interconnected neurons, or 
from a population with denser connections of intermediate strength41 
(Fig. 4a (left)). To assess this, we calculated the distribution of pair-
wise influence scores in our unitary neuron stimulation experiments, 
defined as the average evoked z-scored activity in each non-targeted 
photoactivated x1 neuron after photostimulation of a single targeted 
cell. To estimate the amount of functional coupling within the x1 
network, we considered the percentage of x1→x1 pairs that had influ-
ence scores higher than the highest x1→x2 pair, which had a z score of 
around 0.6 (Fig. 4a (right, vertical line)). The fraction of x1→x1 pairs 
above this threshold was around 36% (Fig. 4a (right)). These data sug-
gest that VMHvlEsr1 neurons that contribute to the line attractor form 
relatively dense functional ensembles, consistent with theory-based  
predictions40.

We next used computational approaches to investigate the kinetics 
of the observed functional connectivity within x1 ensembles. Such 
connectivity could reflect either fast, glutamatergic synapses, as typi-
cally assumed for most attractor networks40; or they could be slow 
neuromodulator-based connections that use GPCR-mediated second 
messenger pathways to sustain long-time-scale changes in synaptic 
conductance. To investigate systematically the density and synaptic 
kinetics of networks capable of generating line attractorlike dynamics 
with the measured integration-dimension (x1) network time constants, 
we turned to mechanistic modelling using an excitatory integrate and 
fire network7 (Fig. 4b). As VMHvl is >80% glutamatergic42, we used excit-
atory networks and analytically calculated the network time constant 
using an eigen-decomposition of the connectivity matrix40 (Extended 
Data Fig. 11a). By varying the synaptic conductance time constant (τs) 
and the density of the integration subnetwork connectivity, we found 
that only artificial networks based on relatively sparse connectivity 
(around 8–12%) and slow synaptic time constants (around 20 s) could 
yield network time constants (τn) in the experimentally observed range 
(~50–200 s; Fig. 4c,e (red shading)). By contrast, networks with fast 
glutamatergic connectivity failed to do so over the same range of con-
nection densities (Fig. 4d,f).
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In these purely excitatory network models, the density of con-
nections that yielded network time constants in the observed range 
was much lower than the experimentally measured value (36%). To 
match more accurately the empirically observed connection density, 
we incorporated excitation-recruited fast-feedback inhibition into 
our integrate-and-fire network7, as VMHvl is known to receive dense 
GABAergic innervation from surrounding areas43,44. The addition of 
global strong feedback inhibition allowed networks to match the 
observed connection density (36%) but, importantly, maintained the 
slow nature of the functional connectivity (20 s; Fig. 4g and 4h (left)). 
Indeed, networks simulated with a long τs (20s) and dense σ (36%) could 
integrate digital optogenetic stimulation in a manner like that observed 
experimentally (Fig. 4i,j). By contrast, purely glutamatergic networks 
(τs = 100 ms) were unable to integrate at the observed timescales given 
the measured connectivity density (Fig. 4h (right) and 4k–l). Together, 
these results suggest an implementation of the VMHvlEsr1 line attractor 
that combines slow neurotransmission and relatively dense41 subnet-
work interconnectivity within an attractor-creating ensemble.

Attractor stability ties to connectivity
The observed dynamics along the integration dimension exhibits two 
important characteristics that can reflect the stability of the line attrac-
tor, ramping activity up; and slow decay down the integrator (Fig. 5a). 
Both of these characteristics might either be intrinsic or be driven by 
external inputs to the line attractor5,40. Previously, we observed that 
individual differences in aggressiveness among mice were positively 
correlated with the stability and decay of the VMHvl line attractor 
during aggression5. We therefore investigated whether individual 

differences in line-attractor ramping or rate of decay might also be 
correlated with the strength of functional connectivity within the x1 
ensemble (Fig. 5b–d). We plotted either the x1 decay time constants, 
or the rate of ramp up along the x1 dimension (obtained from rSLDS 
models fit to each mouse using data recorded during attack observa-
tion), against different quantitative metrics of functional connectivity 
between targeted x1 or x2 neurons and their non-targeted putative fol-
lower cells (obtained from the same animals by single-cell optogenetic 
stimulation and imaging after removal of the demonstrator intruder 
mice) (Fig. 5d,e and Extended Data Fig. 12a).

Notably, there was a strong correlation across mice between the time 
constant (decay) of the line attractor measured during the observa-
tion of aggression, and the strength of functional connectivity among 
integration-dimension (x1) neurons measured by post-observation 
optogenetic stimulation (Extended Data Fig. 12c,d). The strength of this 
correlation was higher after the third stimulus (r2 = 0.87) compared with 
after the first stimulus (r2 = 0.59) (Fig. 5g and Extended Data Fig. 12b), 
indicating that individual differences in the attractor time constant 
become more apparent once the system has already integrated sev-
eral inputs, thereby taking longer to decay. By contrast, there was no 
correlation between functional connectivity and the rate of ramp-up, 
suggesting that the latter might be driven by extrinsic inputs to the 
VMHvl (Fig. 5f and Extended Data Fig. 12b–d). Importantly, the cor-
relation between attractor stability and functional connectivity was 
specific to neurons in the integration (x1) subnetwork, and did not 
hold when rSLDS time constants were compared with the influence 
strength of targeted x1 neurons on x2 cells (Extended Data Fig. 12e–h). 
Thus, individual differences among mice in the stability of the line 
attractor during the observation of aggression are correlated with 

Activation of single neurons reveals functional connectivity among x1 dimension but not  x2 dimension neurons 
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n = 7 mice. Data are mean ± s.e.m.
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individual differences in the functional connection strength among 
attractor-contributing neurons.

Discussion
Using model-guided closed-loop all-optical experiments, we provide 
causal evidence of line attractor-like dynamics in a mammalian sys-
tem (Fig. 5h,i). Our data and modelling also provide insights into the 
implementation of the approximate line attractor5. We found evidence 
of relatively dense, selective connectivity among a physiologically 

distinct subset of Esr1+ neurons. Whether this subset corresponds 
to one of the transcriptomically distinct subtypes of Esr1+ neurons 
remains to be determined31. Our models confirm the importance of 
rapid feedback inhibition7, consistent with studies of the Drosophila 
ring attractor21,45. However they differ from most continuous attractor 
models3,40 by invoking slow neuromodulatory transmission rather 
than fast glutamatergic excitation. Numerous theoretical studies 
have posited that continuous attractors relying on recurrent gluta-
matergic connectivity require precise tuning of synaptic weights to 
sustain stable attractor dynamics40,46,47. By contrast, the inclusion of 

Mechanistic modelling predicts the importance of slow-time-scale neurotransmission to hypothalamic line-attractor dynamics
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slow neurotransmission in our mechanistic models yielded network 
time constants in the observed range across a wide range of con-
nectivity densities. This slow neurotransmission may have evolved 
not only to ensure attractor robustness, but also to implement the 
relatively long time scales of internal affective or motive states. These 
slow dynamics could be implemented by GPCR-mediated signalling 
triggered by biogenic amines or neuropeptides48. Consistent with 
this prediction, we have recently found that VMHvl line-attractor 
dynamics and aggression are dependent on signalling through 
oxytocin and/or vasopressin neuropeptide receptors expressed in 
Esr1+ neurons49. However, that does not exclude a contribution from 
recurrent glutamatergic excitation in the ventromedial hypothala-
mus, as in line attractors that mediate cognitive functions on shorter  
time scales14,50.

Lastly, our observations indicate a pronounced correlation between 
individual differences in the functional strength of integration sub-
network connectivity and differences in the measured stability of 
the line attractor, perhaps reflecting a leaky integrator. We previ-
ously found that, in freely behaving animals, individual differences 
in attractor stability were correlated with individual differences in 
aggressiveness5. By transitivity, this suggests that individual differ-
ences in the strength of functional connectivity within the attractor 
network might underlie individual differences in aggressiveness. As 
these differences are observed among genetically identical inbred 
mice, these observations suggest that attributes of the attractor, such 
as its connectivity density or strength, may be modifiable (either by 
epigenetic mechanisms and/or experience26). Deciphering the under-
lying mechanisms that afford this attractor its apparent flexibility 
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while maintaining its robustness represents a promising avenue for  
future research.
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Methods

Mice
All of the experimental procedures involving the use of live mice, 
or their tissues were carried out in accordance with NIH guidelines 
and were approved by the Institute Animal Care and Use Committee 
and the Institute Biosafety Committee at the California Institute of 
Technology (Caltech). All C57BL/6N mice used in this study, includ-
ing wild-type and transgenic mice, were bred at Caltech. Swiss Web-
ster (SW) male residents and BALB/c male intruder mice were bred 
at Caltech. Experimental C57BL/6N mice and resident SW mice were 
used at the age of 8–20 weeks. Intruder BALB/c mice were used at the 
age of 6–12 weeks and were maintained with three to five cage mates 
to reduce their aggression. Esr1cre/+ knock-in mice ( Jackson Laboratory, 
017911) were back-crossed into the C57BL/6N background and bred at 
Caltech. Heterozygous Esr1cre/+ mice were used for cell-specific targeting 
experiments and were genotyped by PCR analysis using genomic DNA 
from ear tissue. All mice were housed in ventilated microisolator cages 
in a temperature-controlled environment (median temperature, 23 °C, 
humidity, 60%), under a reversed 11 h–13 h dark–light cycle, with ad 
libitum access to food and water. Mouse cages were changed weekly.

Viruses
The following adeno-associated viruses (AAVs), along with the 
supplier, injection titres and injection volumes, were used in this 
study: AAV1-syn-FLEX-jGCaMP7s-WPRE (Addgene, 104492, around 
2 × 1012 viral genomes per ml, 200 nl per injection), AAVdj-Ef1a-DIO- 
ChRmine-mScarlet-Kv2.1-WPRE ( Janelia Vector Core, around 2 × 1012 
viral genomes per ml, 200 nl per injection).

Histology
After completion of 2P/miniscope experiments, histological verifica-
tion of virus expression and implant placement were performed on all 
of the mice. Mice lacking virus expression or correct implant placement 
were excluded from the analysis. Mice were perfused transcardially with 
0.9% saline at room temperature, followed by 4% paraformaldehyde in 
1× PBS. Brains were extracted and post-fixed in 4% paraformaldehyde 
overnight at 4 °C, followed by 24 h in 30% sucrose/PBS at 4 °C. The 
brains were embedded in OCT mounting medium, frozen on dry ice 
and stored at −80 °C for subsequent sectioning. Brains were sectioned 
at a thickness of 80 μm on a cryostat (Leica Biosystems). The sections 
were washed with 1× PBS and mounted onto Superfrost slides, then 
incubated for 30 min at room temperature in DAPI/PBS (0.5 μg ml−1) 
for counterstaining, washed again and a cover slip was added. The sec-
tions were imaged with epifluorescence microscope (Olympus, VS120).

Stereotaxic surgeries
Surgeries were performed on sexually experienced adult male Esr1cre/+ 
mice aged 6–12 weeks. Virus injection and implantation were performed 
as described previously25,51. In brief, mice were anaesthetized with iso-
flurane (5% for induction and 1.5% for maintenance) and placed onto 
a stereotaxic frame (David Kopf Instruments). Virus was injected into 
the target area using a pulled-glass capillary (World Precision Instru-
ments) and a pressure injector (Micro4 controller, World Precision 
Instruments), at a flow rate of 50 nl min−1. The glass capillary was 
left in place for 5 min after injection before withdrawal. Stereotaxic 
injection coordinates were based on the Paxinos and Franklin atlas52. 
Virus injection: VMHvl, anteroposterior (AP), −1.5; mediolateral (ML), 
±0.75; dorsoventral (DV), −5.75. For 2P experiments GRIN lenses (0.6 ×  
7.3 mm, Inscopix) were slowly lowered into the brain and fixed to the 
skull with dental cement (Metabond, Parkell). Coordinates for GRIN lens 
implantation: VMHvl, AP, −1.5; ML, −0.75; DV, −5.55). A permanent head 
bar was attached to the skull with Secure Resin cement (Parkell). For 
microendoscopy experiments, an additional baseplate was attached 
to the skull (Inscopix).

Housing conditions for behavioural experiments
All male C57BL/6N mice used in this study were socially and sexually 
experienced. Mice aged 8–12 weeks were initially co-housed with a 
female C57BL/6N female mouse for 1 day and were then screened for 
attack behaviours. Mice that showed attack towards males during a 
10 min resident intruder assay were selected for surgery and subse-
quent behaviour experiments. From this point forward, these male 
mice were always co-housed with a female.

Behaviour annotations
Behaviour videos were manually annotated using a custom 
MATLAB-based behaviour annotation interface53,54. A ‘baseline’ period 
of 5 min when the animal was alone in its home cage was recorded at the 
start of every recording session. Two behaviours during the resident 
intruder assays were annotated: sniff (face, body, genital-directed 
sniffing) towards male intruders, and attack (bite, lunge).

Behavioural assays
An observation arena was built from a transparent acrylic (18 ×  
12.5 × 18 cm, length × width × height), and a perforated part was put 
in front of the mice observing aggression. Perforations were 1.27 cm 
diameter and spread evenly throughout the bottom third of the panel. 
Before initiation of the assay, the observation arena was scattered with 
soiled bedding from the cage of the aggressive SW demonstrator. For 
observation of aggression in freely behaving animals (miniscope experi-
ments), an observer was first habituated for 15 min. A singly housed SW 
male demonstrator was then introduced into the observation arena, 
followed 1 min later with the insertion of a socially housed stimulus 
male (BALB/c) mouse into the same compartment. The observation 
of aggressive encounters persisted for around 1 min, then, after 2 min, 
a different intruder was introduced for another minute. Observation 
assays were conducted under white-light illumination. For experiments 
in engaging aggression, the resident mouse was first habituated 15 min 
then a BALB/c intruder mouse was introduced twice for 1–2 min. For 
the experiments comparing neural activity of mice observing aggres-
sion and mice engaging aggression, we randomly changed the order of 
sessions. For mice observing aggression in the 2P set-up, the approach 
was similar, except that the observer mouse was head-fixed and on a 
treadmill instead of freely behaving in his home cage.

Microendoscopy imaging
On the day of imaging, the mice were habituated for at least 15 min after 
installation of the miniscope in their home cage before the start of the 
behaviour tests. Imaging data were acquired at 30 Hz with 2× spatial 
downsampling; light-emitting diode power (0.1–0.5) and gain (1–7×) 
were adjusted depending on the brightness of GCaMP expression as 
determined by the image histogram according to the user manual. A 
transistor–transistor logic pulse from the Sync port of the data acquisi-
tion box (Inscopix) was used for synchronous triggering of StreamPix7 
(Norpix) for video recording.

2P imaging and holographic optogenetics
Two to three weeks after surgery, the mice were habituated to the 
experimenter’s hand by handling for 15 min a day for three consecu-
tive days. Once the mice were habituated to the experimenter’s hand, 
they were manually scooped and gently placed onto the treadmill. Mice 
were head-fixed for 3 consecutive days for habituation. Head fixation 
was achieved by securing the head bar into a metal clamp attached to 
a custom head stage. During habituation, the mice were placed under-
neath the objective for 15 min and given access to random presenta-
tions of chocolate milk. After habituation, combined 2P imaging and 
behaviour sessions were conducted. jGCaMP7s imaging was acquired 
using an Ultima 2P Plus and the Prairie View Software (Bruker Fluores-
cence Microscopy). Individual frames were acquired at 10 Hz using a 
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galvo-resonant scanner with a resolution of 1,024 px × 1,024 px. We used 
a long-working-distance ×20 air objective designed for infrared wave-
lengths (Olympus, LCPLN20XIR, 0.45 NA, 8.3 mm working distance) 
combined with a femtosecond-pulsed laser beam (Chameleon Discov-
ery, Coherent). GCaMP was excited using a 920 nm wavelength. For 
targeted photostimulation, the same microscope and acquisition sys-
tem (Bruker) was used with a second laser path consisting of a 1,035 nm 
high power femtosecond pulsed laser (Monaco 1035-40-40, Coherent), 
spatial light modulator (512 × 512 px density) to generate multipoint 
stimulation montages (NeuraLight 3D, Bruker). During photostimu-
lation, the mice were head-fixed in complete darkness on a rotating 
cylinder that enabled them to run. Neurons were selected for targeted 
photostimulation based on two criteria: (1) their weights from the rSLDS 
model and (2) if they responded to photostimulation. In case a neuron 
did not show a significant increase in activity in response to photo-
stimulation, a new neuron was chosen until a total of five photosensitive 
neurons was targeted for each grouped stimulation experiment (Fig. 2). 
During the photostimulation session, a 128-frame average image was 
generated to clearly highlight all neurons. To reduce off-target effects 
during photostimulation, we used small targets (10 µm diameter) that 
were manually restricted to GCaMP-expressing neurons. Moreover, 
the laser power was adjusted to be a maximum of 5 mW per target. We 
used Prairie software to elicit holographic photostimulation (10 Hz, 
2 s, 10 ms pulse width). Photostimulations were done between frames 
to avoid laser artefacts. Importantly, to reduce cross activation of the 
ChRmine from the 920 nm laser, we kept laser power for imaging to 
be less than 30 mW.

To extract regions of interest, data from mice observing aggression 
was uploaded to ImageJ. Videos were then motion corrected using the 
moco plugin55. Motion-corrected videos were averaged, and additional 
contrast and brightness adjustments were made to clearly highlight all 
neurons in the FOV. Cells were then manually extracted and an rSLDS 
model was used to identify x1 and x2 dimension neurons. Neurons 
were then identified on the FOV using the Prairie view software and 
were targeted for photostimulation. While rSLDS models was running  
(15–20 min, see below), control experiments were conducted.

Microendoscopy data extraction
Preprocessing. Miniscope data were acquired using the Inscopix Data 
Acquisition Software as 2× downsampled .isxd files. Preprocessing and 
motion correction were performed using Inscopix Data Processing 
Software. In brief, raw imaging data were cropped, 2× downsampled, 
median filtered and motion corrected. A spatial band-pass filter was 
then applied to remove out-of-focus background. Filtered imaging 
data were temporally downsampled to 10 Hz and exported as a .tiff 
image stack.

Calcium data extraction. After preprocessing, calcium traces were 
extracted and deconvolved using the CNMF-E56 large data pipeline 
with the following parameters: patch_dims = [4], gSig = 3, gSiz = 13, 
ring_radius = 17, min_corr = 0.7, min_pnr = 8. The spatial and temporal 
components of every extracted unit were carefully inspected manually 
(SNR, PNR, size, motion artefacts, decay kinetics and so on) and outli-
ers (obvious deviations from the normal distribution) were discarded.

Terminology. We use the following terminology to refer to the design 
and results of our experiments:
(1) �x1 or x2 neurons: cells that were identified by rSLDS modelling as 

contributing to dimensions x1 or x2, respectively, during observation 
of aggression.

(2) �Targeted neurons: rSLDS-identified cells that were purposely  
photostimulated.

(3) �Photoactivated neurons: cells that were empirically found to  
increase their ∆F/F in response to photostimulation of one or more 
targeted neurons, that is, photoresponsive neurons. This category 

includes both the purposely stimulated (targeted) and not pur-
posely stimulated neurons. The latter may include both off-target 
neurons and putative follower cells.

(4) �Off-target neurons: photoactivated neurons that were not purposely 
photostimulated, but which responded to photostimulation of a 
selected target cell(s) with an increased ∆F/F because they were 
close enough (within 15 µm) to be inadvertently activated by light 
spillover from the targeted neuron (Extended Data Fig. 6a–h).

(5) �Putative follower cells: neurons that responded to photostimu-
lation and that were outside a 50 µm radius around the targeted 
cell (to conservatively exclude off-target neurons; Extended Data 
Figs. 6h and 10k–n); they are putative targets (direct or indirect) 
of the targeted cell.

Dynamical system models of neural data. rSLDS models16,29 were fit 
to neural data as previously described15. In brief, rSLDS is a generative 
state-space model that decomposes nonlinear timeseries data into 
a set of discrete states, each with simple linear dynamics. The model 
describes three sets of variables: a set of discrete states (z), a set of 
latent factors (x) that captures the low-dimensional nature of neural 
activity and the activity of recorded neurons (y). While the model can 
also allow for the incorporation of external inputs based on behaviour 
features, such external inputs were not included in our first analysis.

The model is formulated as follows: at each timepoint, there is a 
discrete state zt ∈ {1, …, K} that depends recurrently on the continuous 
latent factors (x) as follows:

p z z k x R x r( = , ) = softmax{ + } (1)t t t k t k+1 ∣

where R ∈k
K K×R  and r ∈k

KR  parameterize a map from the previous 
discrete state and continuous state to a distribution over the next dis-
crete states using a softmax link function. The discrete state zt deter-
mines the linear dynamical system used to generate the latent factors 
at any time t:

x A x b ϵ= + + (2)t z t z t−1t t

where A ∈k
d d×R  is a dynamics matrix and b ∈k

DR  is a bias vector,  
where D is the dimensionality of the latent space and ϵ N Q~ (0, )t zt

 is  
a Gaussian-distributed noise (also known as innovation) term.

Lastly, we can recover the activity of recorded neurons by modelling 
activity as a linear noisy Gaussian observation y ∈t

NR  where N is the 
number of recorded neurons:

y Cx d δ= + + (3)t t t

For RC ∈ N D×  and δ N S~ (0, )t , a Gaussian noise term. Overall, the sys-
tem parameters that rSLDS needs to learn consists of the state transi-
tion dynamics, library of linear dynamical system matrices and 
neuron-specific emission parameters, which we write as:

θ A b Q R r C d S= {{ , , , } , , , } (4)k k k k k k

K

=1

We evaluate model performance using both the evidence lower 
bound and the forward simulation accuracy (Fig.  3a) described  
previously5,15, as well as by calculating the variance explained by the 
model on data.

We used two-dimensional models, selecting the optimal number of 
states through fivefold cross-validation. To ascertain which neurons 
contributed to each of the two model dimensions (x1 and x2), we initially 
confirmed the orthogonality of these dimensions by computing the 
subspace angle between them (88.1 ± 0.87°, n = 9 mice). Given this near 
orthogonality, we then used the columns of the emission matrix C to 
identify neurons that contributed to the two separate dimensions of 
the model.



The contribution of neurons to each latent dimension is defined 
based on their weights from the emission matrix C, which is initial-
ized by factor analysis and then optimized by rSLDS. In the matrix 
C, the rows define the weights that create the latent dimensions and 
the columns defined the different latent dimensions (x1 and x2) in 
the model. The model performance is reported both as the evidence 
lower bound, which is equivalent to the Kullback–Leibler divergence 
between the approximate and true posterior as well as the variance 
(cross-validated R2 (cvR2)) explained. We cross-validated the model 
using fivefold cross-validation, for which we trained the data on four 
arbitrary portions of the data and tested on a left out fifth portion. In all 
of the experiments, the model must achieve at least 70% cvR2 before it is 
used for downstream analysis such as identification of x1 and x2 neurons. 
Models fit to miniscope data during engagement of aggression obtained 
a cvR2 = 84.7 ± 0.03%, while the same model explains 67.2 ± 0.02% of 
variance in data obtained from observation of aggression. Flow fields 
obtained from head-fixed animals observing aggression where fit with 
input terms representing the presence of the BALB/c intruder.

Estimation of time constants. We estimated the time constant of each 
dimension of linear dynamical systems using eigenvalues λa of the 
dynamics matrix of that system, derived previously as57:

τ
λ

=
1

log(| |)
(5)a

a

The intrinsic leak rate is defined based on the time constant of the 
integration dimension across the whole session. The activity observed 
by the model takes into account both decays (that is, the decays after 
the first and second time the intruder is removed), and therefore gives 
high prediction to the holographic perturbation experiments (cVR2, 
~85%; Fig. 2f,p). Note also that the dynamics captured by the perturba-
tion experiments more closely resembles the second intruder inter-
action rather than the first. Furthermore, the SW mouse is still in the 
observation chamber between BALB/c intruders, but is removed after 
the second intruder. For this reason, the observed dynamics is mostly 
consistent and across mice the second decay seems faster.

Calculation of line attractor score. To provide a quantitative measure 
of the presence of line-attractor dynamics, we devised a line attractor 
score as defined previously5 as:

t
t

line attractor score = log (6)n

n
2

−1

where tn is the largest time constant of the dynamics matrix of a dyna
mical system and tn−1 is the second largest time constant.

Calculation of autocorrelation half-width. We computed autocorre-
lation halfwidths by calculating the autocorrelation function for each 
neuron timeseries data (yt) for a set of lags as described previously12.  
In brief, for a time series (yt), the autocorrelation for lag k is:

r
c
c

= (7)k
k

0

where ck is defined as:

∑c
T

y y y y=
1

( − )( − ) (8)k
t

T k

t t k
=1

−

+

and c0 is the sample variance of the data.

Mechanistic modelling. We constructed a model population of 
n = 1,000 standard current-based leaky integrate-and-fire neurons as 
previously performed7. We first modelled a purely excitatory spiking 

network in which each neuron has membrane potential xi character-
ized by dynamics:

∑τ
x
t

x t g Wp t w s t
d
d

= − ( ) + ( ) + ( ) (9)i
i

j

N

i im
=1

where τm = 20 ms is the membrane time constant, W is the synaptic 
weight matrix, s is an input term representing external inputs and p 
represents recurrent inputs. To model spiking, we set a threshold 
(θ = 0.1), such that when the membrane potential xi(t) > θ, xi(t) is set to 
zero and the instantaneous spiking rate  r t( )i  is set to 1.

Spiking-evoked input was modelled as a synaptic current with  
dynamics:

τ
p

t
p t r t

d

d
= − ( ) + ( ) , (10)i

i is

where τs is the synaptic conductance time constant. In excitatory net-
works, the network time constant τn was derived as 

∣ ∣
τ
λ1 −

s

max
, where 

λ max is the largest eigenvalue of the synaptic weight matrix W (ref. 40).
We designed the synaptic connectivity matrix to include a subnet-

work of 200 neurons (20% of the network), designated the integration 
subnetwork as suggested by empirical measurements, with varying 
densities of random connectivity as highlighted in Fig. 3. Weights  
of the overall network were sampled from a uniform distribution: 
W U N~ (0,1/ )ij , while weights of the subnetwork were sampled as 
W U N~ (0,1/ )ij p , where Np = 200.

External input was provided to the network as a smoothened step 
function consisting of four pulses at 20 second ISI as provided in vivo. 
This stimulus drove a random 25% of neurons in the network.

To account for finite-size effects and runaway excitation in networks, 
we also simulated models with fast feedback inhibition. This was mod-
elled as recurrent inhibition from a single graded input Iinh representing 
an inhibitory population that receives equal input from and provides 
equal input to, all excitatory units. The dynamics of Iinh evolves as:

∑τ
I

t
I t

N
r t

d
d

= − ( ) +
1

( ), (11)
n

N

NI
inh

inh
=1

where τI = 50 ms is the decay time constant for inhibitory currents. In 
this model, outside spiking events, the membrane potential evolved as:

∑τ
x
t

x t g Wp t g I t w s t
d
d

= − ( ) + ( ) − ( ) + ( ) (12)i
i

j

N

i im
=1

inh inh















Model dynamics were simulated in discrete time using Euler’s method 
with a timestep of 1 ms and a small Gaussian noise term η N~ (0,1)/5i  
was added at each time step. We used g = 1 and varied ginh = 1,5,10 as 
suggested by measurements of inhibitory input to VMHvl43.

Spatial cluster decoder. To examine whether x1 and x2 neurons are 
spatially clustered in a FOV, we used a linear support vector machine 
decoder trained to separate cell positions of x1 and x2 neurons on each 
FOV. Shuffled decoder data were generated by randomly assigning 
neuronal identity. Shuffling was repeated 20 times for each FOV and the 
performance is reported as the average accuracy of each fit decoder.

Decoding behaviour from integration dimension. We trained a 
frame-wise decoder to discriminate bouts of attack during engaging in 
aggression from integration dimension activity during observation of 
attack. We first created ‘trials’ from bouts of attack during observation 
and engaging in aggression by merging all bouts that were separated by 
less than 5 s and balancing the data. We then trained a support vector 
machine to identify a decoding threshold that maximally separates the 
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values of our normalized ‘integration dimension’ signal on frames during 
observation of aggression versus all other frames and tested the accuracy 
of the trained decoder on held-out frames. ‘Shuffled’ decoder data were 
generated by setting the decoding threshold on the same ‘trial’, but with 
the behaviour annotations randomly assigned to each behaviour bout. 
We repeated shuffling 20 times. We then tested the decoder trained on 
data from observation on frames during attack while the animals were 
engaging in aggression. We report performances of actual and shuffled 
1D-threshold ‘decoders’ as the average accuracy score of the fit decoder, 
on data from all other trials for each mouse. For significance testing, the 
mean accuracy of the decoder trained on shuffled data was computed 
across mice, with shuffling repeated 1,000 times for each mouse.

Examining the effect of motion on neural encoding during observa-
tion of aggression in head-fixed mice. We used an analysis designed 
to detect motion from video recordings of head-fixed mice58. To detect 
motion this method uses singular value decomposition (SVD) to extract 
groups of pixels showing high differences in luminance or contrast 
between consecutive frames. We extracted 500 SVDs from our video 
recordings that reflect different sources of motion including move-
ments of the limbs, whiskers, nose, ears and more. To predict neural 
activity from behaviour, we trained generalized linear models to predict 
the activity of each neuron k as a weighted linear combination of the 
first ten principal components of the 500 SVDs (reflecting over 90% of 
the SVDs variance) as follows:

⇀ ⎯⇀
y t x t β φ( ) = ( ) +k

Here, y t( )k  is the calcium activity of neuron k at time t, ⇀x t( ) is a fea
ture vector of 10 binary reduced SVD dimensions at time lags ranging 
from t − D to t where D = 10s. 

⎯⇀
β  is a behaviour-filter that described how 

a neuron integrates stimulus over a 10 s period (example filters are 
shown in Extended Data Fig. 5c). φ is an error term. The model was fit 
using tenfold cross-validation with ridge regularization and model 
performance is reported as cvR2.

Statistical analysis
Data were processed and analysed using Python, MATLAB and GraphPad 
(GraphPad PRISM 9). All data were analysed using two-tailed nonpara-
metric tests. Mann–Whitney U-tests were used for binary paired samples. 
Friedman tests were used for non-binary paired samples. Kolmogorov–
Smirnov tests were used for non-paired samples. Multiple comparisons 
were corrected using Dunn’s multiple-comparison correction.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data for this Article have been deposited in the DANDI reposi-
tory with the accession code 001037.

Code availability
Code for fitting models is available at GitHub (https://github.com/
lindermanlab/ssm).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Shared line attractor dynamics in freely behaving 
mice engaging in or observing aggression. a. Implantation of miniscope, 
field of view (top) and fluorescence image showing histology (bottom) with 
jGCaMP7s expression in VMHvl. N = 5 mice. b. Experimental paradigm to record 
VMHvlEsr1 activity in mice engaging in aggression. c. Left: neural & behavioural 
raster of example mouse 1 when engaging in aggression. Right: example neurons. 
d. Experimental paradigm to record VMHvlEsr1 activity in same mice in Extended 
Data Fig. 1c during observation of aggression. e. Left: neural & behavioural 
raster of example mouse 1 during observation of aggression. Right: example 
neurons. f. Overview of rSLDS analysis. g. Left: rSLDS time constants in example 
mouse 1. Right: Normalized neural activity projected onto two dimensions (x1 
and x2) of dynamical system. h. Behaviour triggered average of normalized x1 
and x2 dimensions, aligned to introduction of male intruder (n = 5 mice, average 
trace in dark red and black ± sem in shaded area). i. Behaviour triggered average 
of x1 dimensions, aligned to first attack onset (n = 5 mice, average trace in dark 
red ± sem in shaded red area). j. Left: rSLDS time constants in example mouse 1 

during observation of aggression. Right: Neural activity projected onto two 
dimensions (x1 and x2) of dynamical system. k. Behaviour triggered average of 
normalized x1 and x2 dimensions from observation of aggression, aligned to 
introduction of BALB/c into resident’s cage (n = 5 mice, average trace in dark 
purple and black ± sem in shaded area). l. Behaviour triggered average of x1 
dimensions from observation of aggression, aligned to first bout of observing 
attack (n = 5 mice, average trace in dark purple ± sem in shaded purple area).  
m. Average activity in the x1 dimension during sniffing of the SW mouse, vs 
observing the SW mouse a BALB\c intruder (n = 4 mice, *p = 0.0286, Two-tailed 
Mann Whitney U-test, error bars - sem). n. rSLDS time constants across mice 
engaging in aggression (n = 5 mice, *p = 0.0079, Two-tailed Mann Whitney U-test, 
error bars - sem). o. Line attractor score across mice engaging in aggression 
(n = 5 mice, error bars - sem). p. rSLDS time constants across mice during 
observation of aggression (n = 5 mice, *p = 0.0079,Two-tailed Mann Whitney  
U-test, error bars - sem). q. Line attractor score across mice during observation 
of aggression (n = 5 mice, error bars - sem).
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Extended Data Fig. 2 | Flow fields from miniscope experiments during 
engagement and observation of aggression. Flow fields from all mice 
showing neural trajectories aligned to removal of the intruder or demonstrator 

mouse in either observation or engagement of aggression. Dashed lines highlight 
region of slow points (line attractor).



Article

Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Comparing neuronal activity of x1 neurons during 
engaging vs. observing aggression. a. Normalized neuronal activity of all x1 
neurons from example mouse 1 when engaging in aggression (left) and observing 
aggression (right). Bottom: Raster plots of the activity of all neurons from x1 
dimension in mouse 1. b. Same as in panel a but for example mouse 2. c. comparing 
the activity of x1 neurons between observing and engaging in aggression. Left: 
Average activity across mice (n = 5 mice, shaded area is sem). Right: comparison 
of the activity during observing attack bouts and engaging in attack (n = 5 mice, 
p = 0.42, Two-tailed Mann-Whitney U-test, error bars - sem). d. Activity of x1 
neurons aligned to removal of last intruder during observation and engaging in 
aggression (n = 5 mice, shaded area is sem). e. Quantification of autocorrelation 
half-width for x1 neurons in both conditions during the full interaction (mean 
achw during observation: 25 ± 0.8s, mean achw during engagement: 20 ± 1.7s, 
n=5 mice, p = 0.125, Two-tailed Mann-Whitney U-test, error bars - sem).  

f. Quantification of achw for x1 neurons in both conditions aligned to removal 
of last intruder (mean achw during observation: 14 ± 1s, mean achw during 
engagement: 11 ± 1.6s, n = 5 mice, p = 0.187, Two-tailed Mann-Whitney U-test, 
error bars - sem). g. Decoding bouts of attack during engaging in aggression 
from integration dimension activity during observation of attack. Left: Decoder 
strategy. A SVM decoder was trained on data from integration dimension 
activity to separate bouts of observing attack from non attack bouts. Right: 
Quantification of the decoder accuracy performance (n = 5 mice, p = 0.0079, 
Two-tailed Mann-Whitney U-test, error bars - sem). h. Left: Strategy for testing 
the decoder. The SVM decoder that was trained on observation of attack is 
tested with data from engaging in attack. Right: Quantification of the performance 
of the decoder on engaging vs shuffled data (n = 5 mice, p = 0.0079, Two-tailed 
Mann-Whitney U-test, error bars - sem).
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Extended Data Fig. 4 | Single cell comparison of integration neurons across 
conditions. a. Single cell contribution of x1 dimension (rSLDS weights) from 
engagement of aggression in example mouse. b. Single cell contribution of x1 
dimension (rSLDS weights) from observation of aggression in example mouse. 
c. Overlap in neurons contributing to line attractor x1 & x 2 dimension from 
rSLDS performing independently in engaging versus observing aggression. 
Left: Example mouse, Right: Average across 5 mice, error bars - sem. d. Dot 
product of x1 neural weight vectors during observation vs. engagement in 
aggression. rSLDS weights of the x1 dimension during observation were compared 
to model weights of the x1 and x2 dimensions during engagement using a dot 
product of the two weight vectors. (n = 5 mice, ***p = 0.0079, Two-tailed Mann- 
Whitney U-test, error bars - sem). e. Example raster of baseline activity from 

one mouse freely behaving while solitary in its home cage. f. Example single-cell 
traces from raster in Ex. Data Fig.e. Top - x1 neurons, bottom - x 2 neurons.  
g. Comparison of frequency of Ca+2 transients (above 1.5σ in z-score activity) 
during baseline recordings across mice (mean frequency x1: 1.6 ± 0.2 events, 
mean frequency x2: 2.3 ± 0.2 events, n = 5 mice, *p = 0.012, Two-tailed Mann- 
Whitney U-test, error bars - sem). h. Comparison of the mean amplitude of Ca+2 
transients in x1 vs. x2 neurons during baseline recordings, averaged across mice 
(mean amplitude x1: 0.58 ± 0.04 z-score, mean amplitude x2: 0.71 ± 0.08 z-score, 
n = 5 mice, p = 0.188, Two-tailed Mann-Whitney U-test, error bars - sem).  
i. Comparison of the decay time of Ca+2 events during baseline recordings 
across mice (mean tau x1: 1.7 ± 0.6s, mean tau x2: 2.3 ± 0.4s, n = 5 mice, p = 0.34, 
Two-tailed Mann-Whitney U-test, error bars - sem).



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Readouts of behaviour and motion in head-fixed 
mice. a. Top: Experimental paradigm for 2-photon imaging in head-fixed mice 
observing aggression. A 920nm 2-photon laser was used to monitor activity  
of Esr1+ neurons in VMHvl. Middle: One frame from a video recorded during 
observation of aggression. Bottom: An example of one motion SVD. b. Top: 
Neural activity raster during observation of aggression. Bottom: examples  
of SVD outputs over time during observation of aggression. c. Top: Predicted 
neuronal activity of single neurons and their variance explained by a generalized 
linear model (GLM) from SVDs readout over time. Bottom: Two example cells 
with different levels of variance explained. d. Estimated cumulative distribution 
of variance explained by the GLM of either x1 or x 2 neurons across all mice.  

e. Statistical comparison of variance explained by GLM of x1 activity or x 2 
activity neurons per mouse (n = 7 mice, p = 0.8125, Two-tailed Mann-Whitney  
U-test, error bars - sem). f. Top: One frame from a video recorded during group 
photo-activation of x1 neurons. Middle: An example of one motion SVD. 
Bottom: Time-evolving activity of top 3 SVDs aligned to x1 activation (vertical 
red bars = photoactivation pulses). g. Projection of top 5 motion SVDs and 
stimulus triggered average of each SVD aligned to the start of x1 activation.  
h. Average response in top 5 SVDs during pre-stimulus and stimulus periods 
(n = 8 mice, p >0.05, Two-tailed Mann-Whitney U-test, error bars - sem). i. Same 
as g, but for activation of x2 neurons. j. Same as h, but for activation of x2 neurons.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Controls for off-target effects of 2P photoactivation. 
a. GRIN lens changes the spatial resolution based on the axial depth. Top: 
imaging a calibration slide with 40 μm fluorescent squares at different axial 
distances below the GRIN lens. Bottom: imaging in-vivo jGCaMP7s expressing 
Esr1+ neurons in the VMHvl at different axial distances below the GRIN lens.  
b. Magnification ratio at different imaging depths calculated from the fluorescent 
calibration slide. c. Quantification of the relationship between imaging depth 
and magnification error. Linear regression is used to estimate the degree of 
aberration caused by the GRIN lens. d. Example field of view illustrating the 
experimental procedure for mapping the spatial resolution of 2P targeted 
photo-stimulation through the GRIN lens. Reference neurons were targeted 
first centred on their somata, and then again stepwise at different distances 
from the soma centre along each of the four cardinal directions, using 10 µm 
diameter stimulation spirals. N = 17 cells. e. Average response of all tested 
neurons to stimulation at each location from the soma. Shaded area represents 

standard error of the mean. The red-boxed trace indicates the response observed 
when the stimulation is centred on the reference cell (0 µm). f. Estimated 
cumulative distribution of the reference cell responses at different distances 
from soma. Lighter shades of red represent responses at distances progressively 
further from the soma. n = 17 neurons. g. Raster of neural activity of all 17 
reference neurons tested using the procedure in Ex. Data Fig. e. Note that at 
15 µm the average response in the reference cells is close to zero. h. Normalized 
average activity of all neurons at different distances from soma. Each row is a 
different experiment on a different reference cell. i. Representative examples 
of field of views from two mice. Green - all x1 neurons, Red – all x2 neurons, black 
- non x1 or x2 neurons. Fov - field of view. j. Example illustrating how distances 
are calculated for estimating the spatial clustering of x1 and x 2 neurons.  
k. Quantification of average distance within x1 and x2 neurons and between x1 
and x2 neurons, across mice (n = 8 mice, p > 0.05: Kruskal-Wallis test with 
Dunn’s correction for multiple comparison, error bars - sem).



Extended Data Fig. 7 | Spatial clustering of neurons and activity comparison. 
a. Support vector machine decoder trained to separate cell positions of x1 
versus x2 neurons. Scenario 1 shows a cartoon where cells are perfectly separated 
by the SVM decoder and scenario 2 shows a cartoon where cells are inseparable 
based on their spatial location and shows low classifier accuracy. b. Accuracy of 
SVM decoder trained on data versus shuffled control (n=10 mice, p=0.156: 
Two-tailed Mann-Whitney U-test, error bars - sem). c. Classification width of 

SVM decoder trained on data versus shuffled control (n=10 mice, p=0.578: 
Two-tailed Mann-Whitney U-test). d. Neural activity of five x1 neurons selected 
for grouped optogenetic targeting during observation of aggression. e. Neural 
activity of the same five x1 neurons in panel d during grouped optogenetic 
activation. f. Comparison of peak z-score of x1 neurons selected for grouped 
optogenetic activation during observation of aggression and during optogenetic 
activation (n = 8 mice, p > 0.05: Two-tailed Mann-Whitney U-test, error bars - sem).
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Extended Data Fig. 8 | Characterization of line attractor properties.  
a. Average activity projected onto x1 dimension from activation of x1 neurons 
across mice using 8s inter stimulus interval (n = 7 mice). Shaded area – sem. 
Right: Quantification of average z-scored activity of projected x1 dimension 
during baseline or inter stimulus intervals (n = 7 mice, n.s p = 0.3, **p = 0.0012, 
**p = 0.0012, *p = 0.0192 Kruskal-Wallis test with Dunn’s correction for multiple 
comparison, error bars - sem). b. Average activity projected onto x2 dimension 
from activation of x2 neurons across mice using 8s inter stimulus interval (n = 7 
mice). Shaded area – sem. Right: Quantification of average z-scored activity of 
projected x2 dimension during baseline or inter stimulus intervals (n.s p > 0.05, 
n = 7 mice, Kruskal-Wallis test with Dunn’s correction for multiple comparison, 
error bars - sem). c. Data and model prediction of applying stimulation paradigm 
in Fig. 2c to rSLDS model trained on observing aggression. d. Data and model 
prediction of applying stimulation paradigm in Fig. 2j to rSLDS model trained 
on observing aggression. e. x1 integration dimension activity with 1mW per 
neurons (blue) and 5mW per neuron (red). Shaded area – sem. n = 8 mice.  

f. Quantification of average z-scored activity of projected x1 dimension neurons 
in 1mW and 5mW per neuron during baseline or various inter stimulus intervals 
(n = 8 mice, *p = 0.0295, *p = 0.0186, *p = 0.045, n.s p = 0.7, Two-tailed Mann- 
Whitney U-test, error bars - sem). g. Paradigm for examining activity in x 2 
dimension upon grouped holographic activation of x1 neurons. h. Average 
z-score activity of neural activity projected onto x 2 dimension across mice 
(n = 8 mice). Shaded area – sem. i. Quantification of activity in non-targeted x2 
dimension upon grouped holographic activation of x1 neurons (n.s, n = 8 mice, 
Kruskal-Wallis test with Dunn’s correction for multiple comparison, error bars - 
sem). j. Paradigm for examining activity in x1 dimension upon grouped 
holographic activation of x 2 neurons. k. Average z-score activity of neural 
activity projected onto x1 dimension across mice (n = 8 mice, Shaded area – sem). 
l. Quantification of activity in non-targeted x1 dimension upon grouped 
holographic activation of x2 neurons (n.s p = 0.276, n.s p = 0.276, **p = 0.0072, 
*p = 0.03, n = 8 mice, Kruskal-Wallis test with Dunn’s correction for multiple 
comparison, error bars - sem).



holographic activation of random neurons does not lead to robust activation of either x1 or x2 dimension 
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Examination of finite nature and stability of line 
attractor. a. Top: model prediction, assuming there is a finite length of the 
attractor, after the system reaches a certain point along the attractor, further 
pulses of activity will not cause a further ramp. Bottom: If the line attractor is 
infinite, then each activation should push the system further along the attractor. 
b. Example from one mouse comparing the prediction of finite (top) and infinite 
(bottom) model of the line attractor. Pink lines represent time of photoactivation. 
Mse - mean square error between model and the data. c. Comparison of the mse 
of the whole trace between the data and either the finite or infinite models 
(n = 8 mice, **p<0.001, Two-tailed Mann-Whitney U-test, error bars - sem).  
d. Same as Extended Data Fig. 9c but comparing only after the third pulse. Note 
that the scale of the y axis in Extended Data Fig. 9d is twice as big as in Extended 
Data Fig. 9c (n = 8 mice, **p<0.001, Two-tailed Mann-Whitney U-test, error bars -  
sem). e. Testing off-manifold perturbations further along the attractor. 
Experimental design: first we ramp the activity mid-way along the line attractor 
using activation of x1 neurons, then test the population vector trajectory after 
targeting of x 2 neurons. f. Left: stimulation paradigm. Right: Scheme of the 
quantification approach for the effect of off manifold targeting further along 
the attractor. g. State space and the activity ramp following x1 photo-activation 

(showing only three pulses to avoid clutter). h. Same as Extended Data Fig. 9g 
but for x2 photo-activation. i. Quantification of the activity distance from baseline 
after each photostimulation (n = 8 mice, Kruskal-Wallis test with Dunn’s correction 
for multiple comparison, **p = 0.0025, n.s p > 0.05, error bars - sem). j. Effect of 
grouped holographic activation of randomly selected neurons on activated 
neurons. Shaded area – sem, n = 5 mice. k. Average z-score activity of non-
targeted x1 dimension upon activation of random neurons. Shaded area – sem 
n = 5 mice. l. Average z-score activity of non-targeted x 2 dimension upon 
activation of random neurons. Shaded area – sem, n = 5 mice. m. Left: 
Quantification of activity in non-targeted x1 dimension upon grouped holographic 
activation of random neurons (n.s, p > 0.05, Kruskal-Wallis test with Dunn’s 
correction for multiple comparison, n = 5 mice, error bars - sem). Right: 
Comparison of grouped activation of x1 neurons (green, reproduced from 
Fig. 2d, right) and grouped activation of random neurons on activity of x1 
dimension (black, reproduced from Extended Data Fig. 3m, left, error bars - sem). 
n. Quantification of activity in non-targeted x 2 dimension upon grouped 
holographic activation of random neurons (n.s, p > 0.05, Kruskal-Wallis test 
with Dunn’s correction for multiple comparison, n = 5 mice, error bars - sem).



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Impact of functional connectivity measurements 
on non-targeted neurons. a. Experimental design. We grouped activated five 
x1 neurons (three are shown for illustrative purposes) and examined the activity 
of non-targeted photoactivated x1 neurons following exclusion of off-target 
neurons. b. Z-score activity of x1 dimension photoactivated neurons not targeted 
for photo-stimulation. N = 8 mice. Shaded area – sem. c. Quantification of 
average z-scored activity of a weighted average of non-targeted x1 dimension 
neurons during baseline or various inter- photo-stimulation intervals. (n = 8 
mice, error bars - sem, ***p<0.001). d. Experimental design for decoding analysis. 
We examined whether the activity of non-targeted but photoactivated x1 or x2 
dimension neurons can be used to decode integration of direct photo-stimulation 
by groups of five targeted x1 neurons (three are shown for simplicity), using a 
support vector machine (SVM) decoder. e. One example mouse showing the 
activity of targeted x1 dimension neurons (black), activity decoded from non-
targeted x1 neurons (green), and activity decoded from x 2 non-targeted 
neurons (orange). f. Same as Extended Data Fig. 9e but averaged over 8 mice. 
Shaded area – sem. g. Decoding from non-targeted x1 neurons can explain 
significantly more variance (80% versus 40%) than non-targeted x2 or randomly 
selected neurons (n = 8 mice, *p = 0.01, ***p = 0.0003, n.s. p >0.05, Kruskal Wallis 
test with Dunn’s correction for multiple comparisons, error bars - sem).  
h. Fraction of non-targeted neurons with either positive or negative response 
(defined by whether their mean response post photostimulation of targeted x1 
neuron is 1.5 std above or below baseline activity). i. Averaged activity of non-
targeted neurons with either a positive (left), negative (middle) or no significant 
response (right). Shaded area – sem. N = 8 mice. j. Cartoon illustrating how  
the relationship between spatial distance and response in putative “follower”  

x1 neurons is assessed. k. Example field of view showing z-score response in all 
neurons in a field of view. The filled-in black cell is the targeted x1 neuron and 
the shaded region around it shows a 50 µm stringent zone of exclusion. 
Putative follower cells are shaded according to their z-score response (see 
colour scale). Note that some of the most strongly activated cells are located 
>100 µm from the targeted cell. l. Histogram of distance between targeted x1 
neuron and all putative “follower” x1 neurons (mean: 139 ± 35 µm). m. Scatter 
plot showing the relationship between distance and response in putative 
“follower” x1 neurons. Blue line shows the regression line. 11% of all assessed 
putative “follower” x1 neurons are within 50 µm of the targeted x1 neurons.  
n. Average response from scatter plot in ‘m’. Black line –mean over moving 
window of 15um. Shaded area – sem. o. Average response in non-targeted  
x1 neurons from photo-stimulation of single x1 neuron with (black trace)  
and without (green trace) exclusion of neurons within a 50 µm radius of the 
targeted neuron (pink shaded region in Extended Data Fig. 10l–n). Shaded  
area – sem. N = 8 mice. p. Quantification of data from Extended Data Fig. 10o  
at various time periods after each photo-stimulation pulse. n.s: not significant, 
Kruskal-Wallis test with Dunn’s correction for multiple comparisons,  
error bars - sem. N = 8 mice q. x1 integration dimension activity with activation 
of one neuron (blue) versus five neurons (red). N = 8 mice. Shaded area – sem.  
r. Quantification of average z-scored activity of projected x1 dimension 
neurons with one neuron (blue) versus five neurons (red) during baseline  
or various inter stimulus intervals. N = 8 mice, *p = 0.0239, **p = 0.0063, 
**p = 0.0074, *p = 0.0341, Kruskal-Wallis test with Dunn’s correction for 
multiple comparisons, error bars - sem.



Extended Data Fig. 11 | Deriving network time constant for model simulations. a. Analytical derivation of network time constant from connectivity matrix of 
purely excitatory recurrent neural network.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Additional quantifications of the correlation 
between functional connectivity and the stability of the decay and ramp.  
a. Illustration of different quantification approaches to the change in activity 
of non-targeted x1 neurons from Fig. 5e as either the average z-score activity 
following different stimulus pulses, or the area under the curve (auc). Red 
vertical lines, photostimulation pulses. b. Left: Correlation between the rate of 
ramping of the integration dimension obtained from observation of aggression 
and average z-score of non-targeted x1 neurons measured using the average 
z-score post third stimulus (r2: 0.01, n.s, n = 8 mice). Right: Correlation between 

rSLDS time constant obtained from observation of aggression and average 
z-score across non-targeted x 2 neurons measured using the average z-score 
post third stimulus (r2: 0.87, ***p < 0.001, n = 8 mice). c. Same as b) but calculated 
from non-targeted x1 neurons measuring the auc of activity post first stimulus. 
d. Same as c), calculated from non-targeted x1 neurons measuring the average 
z-score activity. e. Same as c) but calculated from non-targeted x 2 neurons 
measuring the AUC of activity post third stimulus. f. Same as e) but calculated 
using the average z-score activity. g. Same as e) but calculated post first stimulus. 
h. Same as g) but calculated using the average z-score activity.
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